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1 Introduction.

Let G be a flat, finite group scheme finitely presented over a base scheme S. In this
thesis we study G-Galois covers of very general schemes. A morphism f: X — Y is
called a cover if it is finite, flat and of finite presentation. We define a (ramified) G-cover
as a cover f: X — Y with an action of G on X such that f is G-invariant and f,Ox
is fppf-locally isomorphic to the regular representation Oy [G] as Oy [G]-comodule. This
definition is a natural one: it generalizes the notion of G-torsors and, under suitable
hypothesis, coincides with the usual definition of Galois cover when the group G is

constant (see for example | ) , |). Moreover, as explained below, in the
abelian case G-covers are tightly related to the theory of equivariant Hilbert schemes
(see for example | , , , |). We call G-Cov the stack of G-covers and

the aim of this thesis will be to describe its structure.

We denote by p, the diagonalizable group over Z with character group Z/nZ. In
many concrete problems, one is interested in a more direct and concrete description of a
G-cover f: X — Y. This is very simple and well known when G = p9: such a cover f
is given by an invertible sheaf £ on Y with a section of £#2. Similarly, when G = pus, a
us-cover f is given by a pair (L1, L3) of invertible sheaves on Y with maps £?2 — L9
and L£5? — L1 (see | , §6]).

In general, however, there is no comparable description of G-covers. Very little is
known when G is not abelian, except for G = S3 (see | |) and the case of Galois
covers with groups G = D,,, A4, S4 having regular total space (see | , , D).
In the non-Galois case, there exist a general description of covers of degree 3 and 4 (see
| , , ]) and of Gorenstein covers of degree d > 3 (see | , D-

Even in the abelian case, the situation becomes complicated very quickly when the
order of G grows. The paper that inspires our work is | |; here the author describes
G-covers X — Y when G is an abelian group, Y is a smooth variety over an algebraically
closed field of characteristic prime to |G| and X is normal, in terms of certain invertible
sheaves on Y, generalizing the description given above for G = us and G = pus.

We now outline the content of this thesis remarking the results obtained and we will
follow the division in chapters.

1.1 Preliminaries on Galois covers.

Chapter 2 is dedicated to explaining the basic properties of G-covers. Our first result is:

Theorem. [2.1.3,2.1.8] The stack G-Cov is algebraic and finitely presented over S.
Moreover B G, the stack of G-torsors, is an open substack of G-Cov.



1 Introduction.

As particular cases, we will study G-covers for the groups G' = pua, i13, o, Where p
is a prime and oy, is the kernel of the Frobenius map G, — G, over F,. Example
2.1.12, suggested by Prof. Romagny, shows that covers that are generically a,-torsors
are not ajp-cover in general. Moreover, we will prove an unexpected result, that is that
By, = a,-Cov or, in other words, that every oy-cover is an «,-torsor (see 2.1.11). As
we will see, the situation is completely different for Galois covers of linearly reductive
groups (introduced below), even in the diagonalizable case. For instance we will show
that G-Cov is almost never irreducible. This motivates the following definition. The
main irreducible component of G-Cov, denoted by Zg, is the schematic closure of BG in
G-Cov. Notice that, if S is irreducible, then B G is irreducible as well and therefore Z¢
is an irreducible component of G-Cov.

In the last part of the chapter we study examples of isomorphisms G-Cov ~ H-Cov
using the notion of bitorsor: given finite, flat and finitely presented group schemes G
and H over a scheme S a (G, H)-bitorsor is an S-scheme which is simultaneously a
left G-torsor and a right H-torsor and such that the actions are compatible. Notice
that the existence of a (G, H)-bitorsor implies that G and H are locally isomorphic,
but the converse is false. The (G, H)-bitorsors correspond to isomorphisms BG ~ B H
(see | , Chapter III, Remarque 1.6.7]). We will give a proof of this fact and we
will also show that they induce isomorphisms G-Cov ~ H-Cov (see 2.3.7 and 2.3.12).
Moreover if the G-cover X — Y is sent to the H-cover X’ — Y through one of
these isomorphisms, then X and X’ are fppf locally isomorphic over S, étale locally
if G or H is étale and therefore they share many geometric properties, like reduceness,
smoothness, geometrical connectedness and irreducibility and, in the étale case, regularity
and regularity in codimension 1. We will use this construction when we will study
(3 X Z/2Z)-covers and Ss-covers in the last chapter.

1.2 Galois covers under diagonalizable group schemes.

Chapter 3 of this thesis essentially coincides with the article | |. In it, we concentrate
on the case when G is a finite diagonalizable group scheme over Z; thus, G is isomorphic
to a finite direct product of group schemes of the form pg for d > 1. We consider
the dual finite abelian group M = Hom(G, G,,) so that, by standard duality results
(see | |), G is the fppf sheaf of homomorphisms M — G,, and a decomposition
of M into a product of cyclic groups yields the decomposition of GG into a product of
ua’s. Although Chapter 4 study Galois covers for general groups, we have decided to
consider the diagonalizable case first, because in this case G-covers have a very explicit
description in terms of sequences of invertible sheaves. Indeed a G-cover over Y is of
the form X = Spec« where & is a quasi-coherent sheaf of algebras over Y with a
decomposition

o = @ L s.t. Log= Oy, Ly, invertible and £,,L£,, C L4y for all m,n € M

meM
(1.2.1)
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So a G-cover corresponds to a sequence of invertible sheaves (L;,)men with maps
Ymn: Lm @ Ly — L4y satisfying certain rules and our principal aim will be to sim-
plify the data necessary to describe such covers. For instance G-torsors correspond to
sequences where all the maps vy, are isomorphisms. Therefore, if G = y;, a G-torsor
is simply given by an invertible sheaf £ = £; and an isomorphism £%! ~ O.

When G = puy or G = ps the description given above shows that the stack G-Cov is
smooth, irreducible and very easy to describe. In the general case its structure turns out
to be extremely intricate. For instance, as we will see, G-Cov is almost never irreducible.
The existence of the ’special’ irreducible component Z¢g parallels what happens in the
theory of M-equivariant Hilbert schemes (see | , Remark 5.1|). It turns out that this
theory and the theory of G-covers are deeply connected: given an action of G on A",
induced by elements m = mq,...,m, € M, the equivariant Hilbert scheme M-Hilb A",
that we will denote by M-Hilb™ to underline the dependence on the sequence m, can be
viewed as the functor whose objects are GG-covers with an equivariant closed immersion in
A". The forgetful map ¢: M-Hilb™ — G-Cov is smooth with geometrically irreducible
fibers onto an open substack Uy, of G-Cov. Moreover it is surjective, that is an atlas,
provided that m contains all the elements in M — {0} (3.2.8). This means that U,, and
M-Hilb™ share several geometric properties, like connectedness, irreducibility, smooth-
ness or reduceness. Moreover ¥~ (Z¢) coincides with the main irreducible component of
M-Hilb™, first studied by Nakamura in | .

We will prove the following results on the structure of G-Cov.

Theorem. [3.2.1/,3.2.18,3.2.19,5.2.21] When G is a finite diagonalizable group scheme
over Z, the stack G-Cov is

e flat and of finite type with geometrically connected fibers,
e smooth if and only if G ~ 0, uo, us, o X o,

e normal if G >~ g,

e reducible if |G| > 8 and G % (u2)3.

The above properties continue to hold if we replace G-Cov by M-Hilb™, provided that
each nonzero element of M belongs to the sequence m.

We do not know whether G-Cov is integral for G ~ us, ug, pi7, (112)3. So G-Cov is
usually reducible, its structure is extremely complicated and we have little hope of getting
to a real understanding of the components not containing B G. Therefore we will focus
on the main irreducible component Z5 of G-Cov. The main idea behind the study
of G-covers when G is diagonalizable, inspired by the results in | |, is to try to
decompose the multiplications ¥, n, € Ly4n ® E;LI L, I as a tensor product of sections
of other invertible sheaves. Following this idea we will construct parametrization maps
g Fg — Zg C G-Cov, where Fg are 'nice’ stacks, for example smooth and irreducible,
whose objects are those decompositions.
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This construction can be better understood locally, where a G-cover over Y = Spec R
is just X = Spec A, where A is an R-algebra with an R-basis {vm }menrr, vo = 1 (L =
Oy vp,), so that the multiplications are elements 1, , € R such that v,v, = VmnUmin.

Consider a € R, a collection of natural numbers & = (Ey.n)m,nen and set P, , = afmm .
The condition that the product structure on A = ®,,Rv,, defined by the 1, ,, yields
an associative, commutative R-algebra, i.e. makes Spec A into a G-cover over Spec R,
translates into some additive relations on the numbers &, ,,. Call K JVF the set of collections
€ satisfying those relations. More generally given £ = £1,...,E" € K we can define a
parametrization

r Emn Emnn
R" > (a1,...,ap) — Ymp=0a{""--a;™
This is essentially the local behavior of the map mg: Fg — G-Cov. In the global case
the elements a; will be sections of invertible sheaves.

From this point of view the natural questions are: given a G-cover over a scheme Y
when does there exist a lift to an object of Fg(Y)? Is this lift unique? How can we
choose the sequence £7

The key point is to give an interpretation to KJVr (that also explains this notation).
Consider ZM with canonical basis (€., )me s and define Umn = €m~+€en—€min € ZM /{eq).
If p: ZM /{ep) — M is the map p(en,) = m, the vy, ,, generate Kerp. Now call K the
submonoid of ZM /{ey) generated by the vy, ,,, K = Kerp its associated group and also
consider the torus 7 = Hom(ZM /{eg), G,,), which acts on Spec Z[K]. By construction
we have that a collection of natural numbers (€ n)mnem belongs to KY if and only
if the association vy, , — & defines an additive map K — N. Therefore, as the
symbol suggests, we can identify KY with Hom(K,N), the dual monoid of K. Its
elements will be called rays. More generally a monoid map ¢: Ky — (R,-), where R is
a ring, yields a multiplication ¥, ,, = ¥(Vm,n) on B,,c s Rvm and therefore we obtain a
map Spec Z[K ] — Z¢. We will prove that (see 3.2.6):

Theorem. We have Zg ~ [SpecZ[K|/T] and BG ~ [Spec Z[K]/T].

Notice that the whole G-Cov has a similar description as quotient, but we have to
consider non cancellative monoids. We introduce the following notation: given a € N
we set 0% = 1 if & = 0 and 0% = 0 otherwise. Given & = &',...,&" € KX we have
defined a map mg: Fg — Z¢. Notice that if v is a subsequence of £ then F, is an open
substack of Fg and (mg) £, = m,. The lifting problem for the maps 7g clearly depends on
the choice of the sequence £. Considering larger £ allows us to parametrize more covers,
but also makes uniqueness of the lifting unlikely. In this direction we have proved that:

Theorem. [3.1.22] Let k be an algebraically closed field and suppose we have a collection
& whose rays generate the rational cone KYQ. Then the map of groupoids Fg(k) —
Za(k) is essentially surjective. In other words a G-cover of Spec k in the main component
Zq has a multiplication of the form 1y, , = 0%mn for some £ € KY.

On the other hand small sequences £ can guarantee uniqueness but not existence. The
solution we have found is to consider a particular class of rays, called extremal, that have
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minimal non empty support. Set 1 for the sequence of all extremal rays (that is finite).
Notice that extremal rays generate KXQ We prove that:

Theorem. [3.1.47, 3.1.48] The smooth locus ZZ" of Zq is of the form [Xq/T| where
X¢ is a smooth toric variety over Z (whose maximal torus is Spec Z[K]). Moreover
Ty Fy — Z¢ induces an isomorphism of stacks

ml(zE) =z

Among the extremal rays there are special rays, called smooth, that can be defined as
extremal rays & whose associated multiplication 1y, , = 0%mn yields a cover in Zp". Set
& for the sequence of smooth extremal rays. It turns out that the theorem above holds if
we replace 7 with &.

If, given a scheme X, we denote by Pic X the category whose objects are invertible
sheaves on X and whose arrows are arbitrary maps of sheaves, we also have:

Theorem. [5.1.52] Consider a 2-commutative diagram

X ~ Je

floT e
Y —— G-Cov

where X, Y are schemes and £ is a sequence of elements of KX If PicY f—> Pic X
is fully faithful (resp. an equivalence) the dashed lifting is unique (resp. exists and is
unique).

In particular the theorems above allow us to conclude that:

Theorem. [3.1.48, 3.1.53] Let Y be a locally noetherian and locally factorial scheme. A
cover X € G-Cov(Y') such that x| € Z&"(k(p)) for any p € Y with codim, Y < 1 lifts
uniquely to Fe(Y).

An interesting problem is to describe all (smooth) extremal rays. This seems very
difficult and it is related to the problem of finding Q-linearly independent sequences
among the vy, , € K. A natural way of obtaining extremal rays is trying to describe
G-covers with special properties. The first examples of them arise looking at covers with
normal total space. Indeed in | | the author is able to describe the multiplications
yielding regular G-covers of a discrete valuation ring. This description, using the language
introduced above, yields a sequence § = (€¢)¢€<p  of smooth extremal rays, where ®j/
is the set of surjective maps M — Z/dZ with d > 1. We will define a stratification of
G-Cov by open substacks BG =Uy CU; C--- C U‘G|_1 = (G-Cov and we will prove that
there exists an explicitly given sequence £ of smooth extremal rays (defined in 3.3.40)
containing J such that:

Theorem. [53.2./1, 3.3.42] We have Uy C Z&" and mg: Fg — Zg induces isomorphisms
of stacks
g (Ua) = Uz, 75 ' (Uh) = 7z ' (Ur) — Uh
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Theorem above implies that M-HilbA? is smooth and irreducible (3.3.43). In this way
we get an alternative proof of the result in | | (later generalized in | |) in the
particular case of equivariant Hilbert schemes.

Theorem. [3.2.42, 3.3.45] Let Y be a locally noetherian and locally factorial scheme and
X € G-Cov(Y). If Xjx(p) € Ur (resp. Xji(p) € Uz) for all p € Y with codim, Y < 1, then
x lifts uniquely to F5(Y) (resp. Fe(Y)).

Notice that £ = ¢ if and only if G ~ (u2)! or G ~ (u3)" (3.3.44). Finally we prove:

Theorem. [3.2./3, 3.83.55] Let Y be a locally noetherian and locally factorial integral
scheme with dimY > 1 and such that |[M| € O3. Let also f: X — Y be a G-cover. If
X is reqular in codimension 1 (resp. normal crossing in codimension 1 (see 3.3.47)) then
f comes from a unique object of F5(Y') (resp. Fy(Y'), where § C v C & is an explicitly
given sequence). B B

Note that one can replace “regular in codimension 17 with “normal” in the above
theorem because G-covers have Cohen-Macaulay fibers. The part concerning covers that
are regular in codimension 1 is essentially a rewriting of Theorem 2.1 and Corollary 3.1
of | | extended to locally noetherian and locally factorial schemes, while the last
part generalizes Theorem 1.9 of | |.

1.3 Equivariant affine maps and monoidality.

In Chapter 4 we focus on the problem of describing Galois covers for a general finite, flat
and of finite presentation group scheme G over a given base ring R. This problem can
be stated as follows.

Problem 1.3.1. Given an R-scheme T, describe G-covers over 7' in terms of locally
free sheaves over T' (without an action of G), maps among them and the representation
theory of G over the base ring R.

Denote by Loc T (Loc® T') the category of locally free sheaves of finite rank over T' (with
an action of G). Similarly define QCoh T" and QCoh® T replacing locally free sheaves with
arbitrary quasi-coherent sheaves. Given an R-linear functor Q: Loc® R —s QCohT a
monoidal structure on it is given by a natural transformation cy,: Qy @ Qw — Qvew
and an identity 1 € Qp satisfying certain natural conditions. This structure is called
strong if ¢ is an isomorphism and Qp = Orl.

A common result of Tannaka’s theory is that the category of G-torsors over T is
equivalent to the category of strong monoidal, symmetric, R-linear and exact functors
Loc® R — LocT. This is part of the so called “reconstruction problem™ reconstruct a
group G from its category of representations. See | ) | for the classical case
when R is a field and | | for the general one. This gives an answer to problem 1.3.1 in
the case of G-torsors. In this chapter we provide a similar answer for G-covers and, more
generally, for equivariant affine maps. The idea is to extend the above correspondence
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to the case of (non exact) non strong monoidal functors. In order to consider general
equivariant affine maps and not only G-covers, it is also necessary to consider monoidal
functors with values in the whole category of quasi-coherent sheaves.

This functorial point of view for G-covers arises naturally when trying to answer prob-
lem 1.3.1. As seen in the case of diagonalizable groups, the problem of describing G-covers
is equivalent to the problem of understanding the possible algebra structures on the reg-
ular representation R[G]. This task should be easier when R[G] is a sum of smaller parts,
as it happens when G is diagonalizable or a constant group over the complex numbers.
Therefore the first problem to solve is to determine a class of group schemes for which
this simplification is possible. Over a field k, such question has already an answer: the
regular representation k[G]| decomposes into a product of irreducible representations if
and only if the group G is linearly reductive. This property is usually taken as definition
of a linearly reductive group over a field. There is an alternative definition, which has the
advantage of working over any base scheme: a group scheme G over R is called linearly
reductive if the functor of invariants QCoh® R —s QCoh R, F — FC is exact. For an
introduction to this subject see | |. What we are looking for is a collection I of
objects in Loc® R for which the G-equivariant maps

nrF: @HomG(V,]:) QV —F
Vel

are isomorphisms for all F € QCohT and all R-schemes T. Clearly this implies that
G is linearly reductive and, over an algebraically closed field k, that I is the set of the
irreducible representations. Assume that G is a linearly reductive group. The result is:

Proposition. [/.1.10] The maps nr,r are isomorphisms for all F € QCohT and all
R-schemes T if and only if, for all algebraically closed fields k and geometric points
Speck — Spec R, the representations V @ k are irreducible for all V. € I and the
restriction — ® k yields a one to one correspondence between I and the set of irreducible
representations of G X k up to isomorphisms. When Spec R is connected, the previous
condition can be checked at a fixed geometric point.

We will say that a group G admitting a set I as above has a good representation theory
and that the pair (G, 1) is a good linearly reductive group (abbreviated with glrg). For
such a pair we will also write I = I5. Notice that any V € Ig is not only irreducible,
but also geometrically irreducible, that is it is irreducible after base changing to all
the geometric points, and that LMG(V) = Og, while if W € Ig and W # V, then
@G(V, W) = 0. In particular over a field k, G has a good representation theory
if and only if all irreducible representations V have trivial endomorphism rings, that is
End® (V) ~ k, and in this case I is the set of irreducible representations. When the base
is connected, I is uniquely determined up to tensorization by invertible sheaves (with
trivial action). Other examples of good linearly reductive groups are the diagonalizable
groups over R = Z: if M = Hom(G,G,,) and we denote by Z,, the representation
induced by m € M, it is enough to consider the sequence I = (Zu)menm- Notice
that there exist linearly reductive that are not good, for instance Z/pZ over a field not

10
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containing a primitive p-root of unity. On the other hand we prove that (étale) linearly
reductive groups have a good representation theory locally in the (étale) fppf topology
(see 4.1.21). Moreover, any constant group G has a good representation theory over a
strictly Henselian ring R, provided that the characteristic of the residue field of R does
not divide the order of G (see 4.1.22).

When G is a good linearly reductive group and the base scheme Spec R is connected,
a G-comodule F over an R-scheme T which is fppf locally the regular representation is
of the form

F o~ @ Fv ® VY where Fy is locally free of rank rkV (1.3.1)
Velg

Thus F is determined by a sequence of locally free sheaves with prescribed ranks, namely
(Fv)ver,. Now the problem is to understand what additional data are needed and what
conditions such data have to satisfy in oder to induce a structure of algebra over F. A
non associative ring structure on F is given by a collection of maps between sheaves
obtained starting from the Fy,V for V € Ig, whose form depends on how the tensor
products V@ W for V,W € I decompose into representations in I;. Moreover it is not
difficult to convince oneself that the conditions those maps have to satisfy in order to
have a commutative and associative algebra strongly depend on the two ways one can
decompose (VW)@ Z ~V @ (W ® Z) for VW, Z € I into representations in Ig. I
have to admit that I have never been brave enough to write down those last conditions,
although this should be an elementary task: it seems pretty clear that there is no hope
to simplify those conditions for a general group, obtaining a really meaningful set of
data. The diagonalizable case is much more simple than the general one because tensor
products of representations are very easy.

The approach I propose to work around this situation is to associate with a sheaf F not
only the sequence (Fy)yey,,, but a whole functor Loc® R — LocT. With a G-comodule
F we associate the functor Q7 : Loc® R — LocT given by

QF = (Fev)©

Notice that, with notation from (1.3.1), Fy = Q, for all V' € I. Although we do not
have a finite set of data, this approach has, at least, two advantages. The first is that,
as we will see, a structure of algebra on F translates into natural properties on Q7. The
second is that this point of view, without additional technicalities, allows us to consider
and describe any G-equivariant affine map, that is any affine map f: X — T with an
action of G on X for which f is invariant, and that the theory can be developed for any
finite, flat and finitely presented group scheme.

So assume that G is a finite, flat and finitely presented group scheme over a ring R.
Given an R-scheme T define QAdd® T as the category of R-linear functors Loc® R —
QCohT. Denote also by QAdd% (resp. QCoh%) the stack (not in groupoids) whose fiber
over an R-scheme T is QAdd® T (resp. QCoh% T). Given Q2 € QAdd® T, we will show
that Qr(g € QCohT has a natural structure of G-comodule and the first result we will
prove is:

11
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Theorem. [4.2./] Given an R-scheme T, the functors

Fo=Qpg 1 Q
QCoh® T QAdd® T
Fr— 0F = (—@F)C

yield an equivalence between QCoh® T and the full subcategory of QAAd T of left exact
functors.

The group G is linearly reductive over R if and only if the functors in QAdd® T
are left exact for all R-schemes T' (see 4.2.6). In this case we get an equivalence of
stacks QCoh§ ~ QAddg and similar equivalences exist when we consider the category of
finitely presented quasi-coherent sheaves or locally free sheaves of finite rank instead of
the whole category of quasi-coherent sheaves. Note that the functor associated with the
regular representation Op[G] is the forgetful functor V. —— V®@Orp. In the particular case
where G is a good linearly reductive group, the functor 2 — Qpg has a more explicit
description: given Q € QAddY T there exists a natural, G-equivariant isomorphism

Qe =~ P Ve
Velag

This shows how the above construction generalizes the isomorphism (1.3.1).

Now that we have a way to associate with a G-equivariant quasi-coherent sheaf F a
functor Q7 , the next question is what additional data Q7 must have to induce a structure
of equivariant sheaf of algebras on F. The answer is a symmetric, monoidal structure.
Given an R-scheme T, denote by QMon® T the category of functors Q € QAdd® T with
a symmetric monoidal structure and by QAlg® T the category of quasi-coherent sheaves
of algebras with an action of G. Denote also by QMon% (resp. QAlg%) the stack (not in
groupoids) whose fiber over an R-scheme T is QMon® T’ (resp. QAlg® T').

Theorem. [4.2.21] Given an R-scheme T, the functors

O*

QALC T QMon® T

*R[G]

yield an equivalence between QAlg® T and the full subcategory of QMon® T’ of left exact
functors.

When G is a linearly reductive group we obtain an equivalence of stacks QAlgg ~
QMong and similar equivalences are defined if we consider finitely presented quasi-
coherent sheaves or locally free sheaves of finite rank instead of all the quasi-coherent
sheaves.

Note that the regular representation Or[G] corresponds to the forgetful functor V- —
V @ Or with the obvious monoidal structure. Denote by LMon% the substack of QMong
composed of functors with values in the category of locally free sheaves of finite rank.
The answer to the initial problem 1.3.1 is the following.

12
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Theorem. [4.2.29] The association

G-Cov — LMon%, (X -1 T) s QfOx = (£,0x © -)°¢

induces an equivalence onto the substack in groupoids of LMon% of functors that, as R-
linear functors, are fppf locally isomorphic to the forgetful functor. If G is a good linearly
reductive group and Spec R is connected, this is the substack of functors Q0 such that
tkQy =1k V for all V € Loc® R (or allV € Ig).

Notice that the last part of the above Theorem is no longer true even for linearly
reductive groups without a good representation theory. It fails in the simplest possible
case: G =7Z/3Z, R=Q and T = SpecQ. In the above correspondence the stack BG of
G-torsors is sent to the stack of symmetric, strong monoidal, R-linear and exact functors
(see 4.2.34). We retrieve in this way the classical Tannaka’s correspondence, which was
also the starting point of the discussion about G-covers for general groups G at the
beginning of this section.

The above Theorem shows clearly how the constructions we have made are just a
generalization of the description of G-covers when G is a diagonalizable group (see 1.2.1).
If M = Hom(G, G,,), G is a good linearly reductive group with Ig = (Zy)menm and a
functor Q € QAddY T for which Qy is locally free of rank rkV for all V € Ig is just
given by a collection of invertible sheaves £, = {7, , while a monoidal structure on €2,
that is a ring structure over {zq ~ BmemZam” @ Ly, is just given by maps

Qz,, ® Qz, = Lin @ L, — Lingn = 2,4, ~ V2,02,

satisfying certain conditions.

From now on G will be a linearly reductive group scheme over a base ring R and, as
always, we will assume that it is flat, finite and of finite presentation. We want to discuss
some applications of the functorial point of view introduced above.

When G is a diagonalizable group, M = Hom(G, G,,) and the sequence (Ly,, Ymn)m.nem
defines a G-cover (see 1.2.1), a classical result is that this cover is a G-torsor if and only
the maps ¥, —m: Lm @ Ly, — Lo = O are isomorphisms for all m € M (see | ,
Exposé VIII, Proposition 4.1 and 4.6]). In this thesis we generalize this property for more
general groups. A linearly reductive group G over an algebraically closed field is solvable
(super solvable) if it admits a filtration by closed subgroups 0 = Hy<Hy<---<H, =G
such that, for all ¢, H;1/H; ~ p, for some prime p (and H; < G). A linearly reductive
group over a ring R is solvable (super solvable) if it is so over any geometric point of
Spec R. Denote also by LAlg% the full substack of QAlg% of algebras that are locally free
of finite rank, which is isomorphic to LMong via the functor Q*. The result we prove is
the following:

Theorem. [4.2.42] Let G be a super solvable good linearly reductive group over a ring R
and let &/ € LAlgg T, for an R-scheme T. Then &/ € BG if and only if Qg(: ) ~
Or and for all V € Ig the maps

OF @ U — Qg — QF ~ Or (1.3.2)

are surjective.

13
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Notice that the above Theorem is no longer true if we consider solvable groups, even
in the constant case (see 4.2.53). The above criterion will be applied in the study of
(3 X Z)27)-covers.

When G is diagonalizable, we have seen that G-Cov is almost never irreducible. This
bad behaviour continues in the non abelian case:

Theorem. [4.3.1] If G is a finite, non abelian and linearly reductive group then G-Cov
1s reducible.

The methods used in the proof of the above Theorem neither reduce, nor are applicable
to the diagonalizable case and they involve the study of more general G-equivariant
algebras than the ones inducing G-covers. Moreover they allow us to construct G-covers
outside the main irreducible component Zg, while the same problem is more difficult in
the diagonalizable case.

Another interesting question about the theory of G-covers, and one of the most im-
portant from the point of view of classical algebraic geometry, is the question about
regularity of G-covers and, more generally, about the preservation of geometrical prop-
erties: given a regular (resp. normal, regular in codimension 1) integral scheme Y and a
cover f: X — Y, understand when X is regular (resp. normal, regular in codimension
1). When this happens we will call this cover regular (resp. normal, regular in codi-
mension 1). Notice that a cover of a normal scheme that is regular in codimension 1
is normal, because a cover has Cohen-Macaulay fibers. The problem of detecting the
regularity of a cover arises together with the problem of constructing such a cover. We
have to admit that this last problem seems very difficult to handle in this generality,
but one can hope to be able to find at least families of regular covers. Anyway in this
thesis we will concentrate only on the first problem and only on the case of regularity in
codimension 1. We generalize what happens in the diagonalizable case and the leading
idea is the following. If o is a locally free algebra of finite rank over a scheme Y, denote
by tr, : o/ — o/ the map x — tr (z-—), where tr, is the trace map &/ — Oy. A
classical result is that the algebra o7 is étale over Y if and only if tr, is an isomorphism
(see | , Proposition 4.10]). The idea is that, the less degenerate tr,, is, the more
regular the algebra & should be. If f: Spec/ — Y is the associated cover, denote by
s¢ € (det @)~ the determinant of tr,, also called the discriminant section. This section
is important because its zero locus is the complement of the locus where f is étale. If
o/ € G-CovY and G has a good representation theory, given V € Ig the map (1.3.2)
induces a map Q — (Q"‘va)v and we will denote by sy € det(Q7) 1 @ det(Q%,)
the section associated with its determinant. When G is an étale, good linearly reduc-
tive group the relation between the sections just introduced is given by the following
isomorphism (see 4.4.6)

(det @7) =2 ~ ® (det(Q{/)_1 ® det(Q(/v)_l)rkV such that sy — ® s?i{/kv
Velg Velg

If we denote by Y1) the set of codimension 1 points of Y and by vg the valuation for
g € YW, the result we will prove is the following:

14
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Theorem. [}.4.7] Let G be a finite and étale linearly reductive group over a ring R. Let
also Y be an integral, noetherian and regular in codimension 1 (resp. normal) R-scheme
and f: X — 'Y be a cover with a generically faithful action (see 4.4.8) of G on X such
that f is G-invariant and X/G =Y. Then the following are equivalent:

1) X is regular in codimension 1 (resp. normal);

2) the geometric stabilizers of the codimension 1 points of X are solvable and for all
q € YU we have vy(sy) <tk G (= 1k f).

In this case f is generically a G-torsor, f € Za(Y') and the stabilizers of the codimension
1 points of X are cyclic. Moreover, if G has a good representation theory, the above
conditions are also equivalent to

3) the geometric stabilizers of the codimension 1 points of X are solvable, f € G-Cov
and for allg e Y and V € I we have vg(spy) <tkV.

I am strongly convinced that the above statement is still true without the hypothesis
of solvability on the geometric stabilizers. Actually I am also convinced that, with some
minor modifications, the first part of the statement continues to be true without the
existence of a generically faithful action of a group. I think that the statement which
should be true is:

Conjecture. Let R be a discrete valuation ring with residue field k and A be a finite
and flat R-algebra. Then

vgr(dettry) > 1k A — |Spec A @R k|

and equality holds if and only if A is regular, generically étale with separable residue fields
and the localizations of A ®pg k have ranks prime to the characteristic of k.

Except for the implication “equality = regularity”, I am able to prove the rest of the
statement. When we have a generically faithful action of, say, a solvable group G on A
one can argue by induction on rk A = rk G considering the invariant algebra for a normal
subgroup of G. The base case in this induction is G' = p,,, for some prime p, where the
result can be easily deduced from the theory developed for diagonalizable groups.

1.4 (u3 % Z/27)-covers and S;-covers.

In the last Chapter of this thesis we will study G-covers for the non abelian group scheme
G = pg X Z/27 and Ss-covers. In oder to simplify the exposition we work over the ring
R = Z[1/6]. Denote by ¢ € Z/2Z(R) the generator and consider it also as a section
of G and, after choosing a transposition, as a section of S3. The groups G and Ss are
linearly reductive over R and they also have a good representation theory. We can choose
I¢ = {R,A,V}, where A = R with the action induced by the non trivial character of
Z/27 and V = indff3 V1, where Vj is the ps representation associated with the character
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1 € Z/3Z. In the second chapter we prove that, if H and H' are étale locally isomorphic
group schemes, then we have an isomorphism B(H x Aut H) ~ B(H’' x Aut H') (of stacks
classifying fppf torsors) (see 2.3.10). In particular, considering H = u3 and H' = Z /37
over R, we obtain an isomorphism BG ~ B S3. By the general theory of bitorsors
described in the second chapter, we also obtain an isomorphism G-Cov ~ S3-Cov over
R. Thus the study of G-covers coincides with the study of Ss-covers, and, due to the
nature of the isomorphism G-Cov ~ S3-Cov, the problems of regularity of covers also
coincide. Anyway we will describe the structure of G-equivariant algebras only, because
the representation theory of G has a simpler explicit description and all the theory works
over Z[1/2], instead of Z[1/6]. The groups G and S3 can be considered the simplest non
abelian linearly reductive groups. This is essentially the motivation for a detailed study
of G-covers and Ss-covers.

A similar analysis of S3-covers is conducted in | |, where the author describes the
data needed to build them in terms of linear algebra. Here, using a different approach,
we recover this result and we expand it, describing particular families of S3-covers, char-
acterizing the regular ones and computing the invariants of the total space of a regular
S3-cover of a surface.

Using the theory developed above, a G-cover over an R-scheme T corresponds to an R-
linear, symmetric and monoidal functor €2: Loc® R — Loc T such that rk Qy = tk W
for all W € Ig. It is easy to deduce the data needed to build a G-cover. Since Qg = Op
for general reasons, we need an invertible sheaf £ = Q24 and a locally free sheaf F = Qy
of rank 2 in order to have a functor Q € QAdd%. For the monoidal structure, for
all Wi, Wy € Ig we need maps Qw, ® Qw, — Qw,ew,. Since we are interested in
commutative algebras with unity and we have relations A A ~ R, A®V ~ V and
VeV ~RaeA®V, amonoidal structure on 2 is given by maps

LOLTS O, LOF - F, For- 22%0% o orer
satisfying certain conditions, required for the associativity of €). As it happens in the
diagonalizable case, this is the hard part. Such conditions imply that (—,—),3 are
symmetric, (—, —) is antisymmetric and that (—, —) is uniquely determined by the other
maps. In conclusion it turns out that a G-cover over T is associated with a sequence
x = (L, F,m,q,3,(—,—)) where L is an invertible sheaf, F is a locally free sheaf of rank
2 and m, a, B, (—, —) are maps

L2 0p LOF -5 F, Sym?>F L F, det F b

that satisfy certain conditions. The above association will be formulated in terms of
isomorphism of stacks (see 5.2.4). I do not think that further simplifications are possible
in this generality. Although the data above are directly associated to a G-cover, they
also correspond to an S3-cover, as remarked above. We will identify G-Cov and S3-Cov
with the stack of data defined as above and all the results cited below, including the ones
regarding the geometry of covers, continue to be true if we replace G-Cov by S3-Cov
and G-covers by Ss-covers. Anyway some general results will be stated for both G and
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S3. The main idea followed in order to get to a better understanding of G-covers and
Ss-covers is to look at particular loci of G-Cov, that is to look at data as above satisfying
additional conditions. All those loci are interesting because they will allow to understand
the geometry of G-Cov and S3-Cov and also to describe regular G-covers and S3-covers.
It is convenient at this point to introduce more notation. Denote by Cs the stack of
pairs (F,d) where F is a locally free sheaf of rank 2 and ¢ is a map Sym> F — det F
and by Covs the stack of degree 3 covers, also called triple covers. It is a well known
result of the theory of triple covers (see | , , |) that there exists an
isomorphism of stacks C3 — Covs so defined: an object ® = (F,0) € C3(T"), where T'
is an R-scheme, induces maps 7s: Sym? F — Op and fBs: Sym? F —» F which define
an algebra structure on the sheaf @/ = Op @ F. Taking invariants by o € Z/27Z we
obtain a map w: G-Cov — Covs ~ C3. Notice that the same procedure yields a map
S3-Cov — Covg and it is possible to prove that G-Cov and S3-Cov are isomorphic over
Covs (see 5.3.8). The first result on the geometry of G-Cov we prove is the following:

Theorem. [5.3.5] The map w: G-Cov — Covs restricts to an isomorphism of stacks
U, — Covs, where U,, is the open substack of G-Cov where (—,—): det F — L is an
1somorphism.

In particular this gives a functorial way of extending triple covers to G-covers or Ss-
covers. Looking at the global geometry we prove that:

Theorem. [5.3.17, 5.3.22, 5.8.28] The stacks G-Cov and S3-Cov are connected, non-
reduced and have two irreducible components, the main one Zq, which coincides with
the zero locus of the maps L — FY @ F — Or and F — F' @ F — O induced
by a and B respectively, and the closed locus of G-Cov where = (—,—) = 0 and « is
fopf locally a multiple of the identity. Moreover BG C G-Cov is the open substack where
(—,—) and m are isomorphisms.

For covers in Zg are possible two further simplifications of the data associated with
them, one for the whole Z5 and one that regards particular objects of Z5. We want to
describe only the second simplification, because it will be the one used in the description
of regular G-covers. Given y = (£, F,m,a,3,{—,—)) € G-Cov set M = L ® det F~!
and w € M the section corresponding to (—, —). Moreover, given an R-scheme T denote
by Z,(T) the full subcategory of Zg(T) where O —= M is injective, which means that
w yields a Cartier divisor over T. We will prove that Z,(T) is isomorphic to the category
whose objects are sequences (M, F,§,w) where (F,d) € C3(T), M is an invertible sheaf
and w € M is a section such that Op —= M is injective and its image contains the
image of n5: Sym? F — Or (see 5.3.29). In particular we see that the extensions of a
triple cover (F,d) to a G-cover in Z,(T) correspond bijectively to the effective Cartier
divisors contained in the locus where 75 is zero.

The last part of this thesis is dedicated to the study of regular G-covers and S3-covers.
Notice that it is possible to apply directly the result previously obtained on covers that are
regular in codimension 1 for general groups (see 5.4.5), but what we get is a particular
case of the description of regular G-covers we want to explain. Let Y be an integral,

17



1 Introduction.

noetherian and regular scheme. Given x = (£, F, m,«, 8,(—, —)) € G-Cov(Y') we define:
D,, and D,, as the closed subschemes of Y where m: £2 — Oy and (—, —): det F — L
are zero respectively; Y, as the vanishing locus of the map «: L ® F — F. Notice that
we have an inclusion Y, C D,,. Given ® = (F,0) € C3(Y) we define: Y; and D
as the closed subschemes of Y defined by 7s: Sym? F — Oy and the discriminant
Ag: (det F)2 — Oy respectively, where the last map is induced by the determinant of
tArmP: o — p"” . Finally, given a proper, closed subscheme Z of Y, denote by D(Z)
the divisorial component of Z in Y, that is the maximum among the effective Cartier
divisors contained in Z. The Theorem we will prove is the following.

Theorem. [5.4.6, 5.4.13, 5.4.14] Let Y be a regular, noetherian and integral scheme
such that dimY > 1 and 6 € O5.. If x = (L, F,m, o, B3,(—,—)) € G-Cov(Y') then the

associated G-cover (Ss-cover) Xy, — Y is regular if and only if the following conditions
hold:

1) Dy, D,, are Cartier divisors and Dy, N Dy, = 0;

7

2) Yo =0 orY, is reqular of pure codimension 2 in'Y;
3) D, is reqular and D,, is reqular outside Yy, .

In this case the triple cover X, /o — Y (which does not depend on whether we see X
as a G-cover or Sz-cover) is reqular and, if (F,d) € C3 is its associated object, we have:
D, = D(Yy), Ds =2D,+ Dy, and Y5 = D,UY,. If f: X — Y is a regular triple cover
associated with (F,8) € C3(Y'), then Y5 = D(Y5) UYy, where Yy is a closed subscheme of
pure codimension 2 if not empty and D(Yy) is reqular. Finally the maps

X ! X/o
{regular G-covers over Y}
J\z [ regular triple covers (F,0) over'Y
such that Ys is reqular

{regular Ss-covers over Y}

(OY(D(Y:S))PF?(S?l) ' }(’F76)

are inverses of each other.

After this classification of regular G-covers and Ss-covers two questions naturally arise:
how to construct them and how the cohomological invariants of the total space related
to those of the base. If Z is a scheme and &£ is a coherent sheaf over it, we will say that £
is strongly generated if, for any closed point ¢ € Z, the map H%(Z,€) — £® (O Zp/ mg)
is surjective. For the first question, we will prove the following result.

Theorem. [5.4.16] Let k be an infinite field with char k # 2,3, Y be a smooth, irreducible
and proper k-scheme with dimY > 1, F be a locally free sheaf of rank 2 over Y and set
£ = Hom(Sym?® F,det F). If £ @ k is strongly generated (over Y x k) then there exists
d € & such that the triple cover associated with (F,d) € C3(Y) extends to a G-cover
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(S3-cover) Xs — Y with X5 smooth and Y5 = () or codimy Yy = 2. Moreover, if Y is
geometrically connected, then X is geometrically connected if and only if det F % Oy
and HY(Y, F) = 0.

When Y is projective, it is possible to prove that, if £(—1) is globally generated, then
F satisfies the hypothesis of strong generation in the above theorem (see 5.4.17). For
instance F = Oy (—1)? satisfies such hypothesis and det F % Oy and H°(Y,F) = 0.
Therefore

Corollary. [5.4.18] Let k be an infinite field with chark # 2,3. Then any smooth,
projective and irreducible (resp. geometrically connected) k-scheme Y with dimY > 1
has a G-cover (Ss-cover) X — Y with X smooth (resp. smooth and geometrically
connected).

Finally, when Y is a surface over an algebraically closed field, we will compute the
invariants of the total space of a regular Ss-cover of Y. The result is:

Theorem. [5.4.2/] Let Y be a smooth, projective, integral surface over an algebraically
closed field k such that chark # 2,3 and f: X — Y be a reqular Ss-cover associated
with (F,8) € C3(Y). The closed subscheme Y5 of Y is the disjoint union of a smooth
divisor D and a finite set Yy of rational points and the surface X is connected if and only
if HY(F) = 0 and Oy (—D) % det F. In this case the invariants of X are given by

10
K% = 6K% 4 6¢1(F)? — 12¢1(F)Ky — §D2 —4DKy

pg(X) = pg(Y) + 2h(F) + h*(Oy (D) @ det F)
x(Ox) = 6x(Oy) — 2c2(F) + %(301(]—")2 — 3¢1(F)Ky — DKy — D?)

2
Yo| = 3ca(F) — gD2
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1.6 Notation.

General.

A cover is a map of schemes f: X — Y which is finite, flat and of finite presentation
or, equivalently, which is affine with f,Ox locally free of finite rank. We will say that the
cover f is regular (resp. regular in codimension 1, normal, normal crossing in codimension
1) if the total space X has the same property. (The definition of normal crossing in
codimension 1 will be introduced later.)

If X is a scheme and p € X we set codim, X = dimOx ), and we will denote by
XM = {pe X | codim, X = 1} the set of codimension 1 points of X.

Given a € N, we will use the following convention

0% — 1 a=0
0 a>0

We denote by (Sets) the category of sets, by Sch/.S the category of schemes over a base
scheme S and by (Grps) the category of groups. Given a (fppf) stack X’ over a scheme S
we will denote by X'8" the associated stack of groupoids and, if X' is an algebraic stack,
we denote by |X| its associated topological space.

By a Henselian ring we always mean a noetherian local ring which is Henselian. If A is
a local ring we will often denote by m 4 is maximal ideal. A DVR will be a local discrete
valuation ring.

Sheaf Theory.

Let S be a scheme. We will denote by QCohg, FCohg, Locg the stacks of quasi-coherent
sheaves, finitely presented quasi-coherent sheaves, locally free sheaves of finite rank over
S respectively. Let F € QCohS. We define the functor W(F): (Sch/S)°? — (Sets) as

W(F)(U 5 5) = H(U.J*F)
Notice that if F is a locally free sheaf of finite rank, then W(F) is smooth and affine
over S. The expression s € F will always mean s € F(S) = H°(S, F). Moreover we will
denote by V(s) the zero locus of s in S, i.e. the closed subscheme associated with the

sheaf of ideals Ker(Os — F). Given an element f = (a1,...,a,) € Z" and invertible
sheaves Lq,..., L, on a scheme we will use the notation
Lr=@Q L, sym”" L=Sym™(L1,.... L;) = P L7
i geEL”

Notice also that, if £; = Og for all i, then there is a canonical isomorphism £f ~ O.
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Representation theory.

Let S be a scheme. Given an affine group scheme f: G — S, we will denote by
Os|G] = f.O¢ its associated Hopf algebra and by

Agi Os[G] — Os[G] ®05[G}, G- Os[G] — (95, oG- Os[G] — Os[G]

the co-multiplication, the co-unity and the co-inverse of G respectively. By an action
of G on a quasi-coherent sheaf F over S we mean a left action of G on W(F), which
corresponds to a structure of right Og[G]-comodule F — F ® Og[G]. We will often also
call it a G-comodule structure or call F a G-equivariant sheaf. By an action of G on a
S-scheme X we mean a right action X x G — X. If X = Spec &7, for some Og-algebra
</, this means that we have a G-comodule structure &/ — & ® Og[G] which is an
algebra homomorphism, or, equivalently, such that the multiplication &/ ® &/ — 7 is
G-equivariant and 1 € &7©.

Given functors F, H: (Sch/S)°? — (Sets), left actions of G on F' and H induce a
left action on Hom(F, H) given by

G x Hom(F, H)

Hom(F, H)

-1

(9,0) ! C gy

Let F be a locally free sheaf of finite rank over S and H € QCohS (FCoh S). Then
Hom(F,H) € QCoh S (FCoh S) and we have a natural isomorphism

W(Hom(F,H)) — Hom(W(F), W(H))

In particular, actions of G on F and H yield an action of G on Hom(F,H). We
denote by Hom®(W(F),W(#H)) (resp. End® W(F), Aut® W(F)) the subfunctor of
Hom(W(F), W(#H)) (resp. End W(F), Aut W(F)) given by the G-invariant elements,

that are exactly the G-equivariant morphisms. In particular we have
W(Hom(F,H))¥ ~ Hom(W(F), W(#))® ~ Hom®(W(F), W(H))

The subsheaf of G-invariants of Hom(F, ), denoted by Hom%(F, #), coincides with the
subsheaf of morphisms preserving the G-comodule structures. Finally set End®(F) =
Hom(F, F).

We will denote by QCoh&, FCoh§, Locg the stacks over S of G-equivariant quasi-
coherent sheaves, finitely presented quasi-coherent sheaves, locally free sheaves of finite
rank respectively. If F € QCoh S we will denote by F € QCoh® S the quasi-coherent
sheaf F with the trivial action of G. Moreover if F € QCoh® S and 6: H — G is a
morphism from a group scheme H over S we will denote by Ry F € QCoh® S the sheaf
F with the H-action induced by d.

By a subgroup scheme H of a flat and finitely presented group scheme G we will
always mean a subgroup which is a closed subscheme of G and it is flat and finitely
presented over the base. If N is an abelian group we set D(INV) = Hom,, (N, Gyy,) for
the diagonalizable group associated with it.
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2 Preliminaries on Galois covers.

We fix a base scheme S and a flat and finite group scheme G finitely presented over S.
In this chapter we want to introduce some basic definitions about G-covers and prove
some general results. This is how the chapter is divided.

Section 1. We define the notion of G-covers and we introduce the stack G-Cov of
G-covers. We will then prove that G-Cov is an algebraic stack containing B G as open
substack and, as examples, we will describe G-Cov for the groups G = pua, u3, oyp.

Section 2. We define the main irreducible component Zg of G-Cov as the schematic
closure of BG in G-Cov.

Section 3. We show that the isomorphisms B G ~ B H correspond to (G, H)-bitorsors
and we will explain how they induce isomorphisms G-Cov ~ H-Cov.

2.1 The stack G-Cov.

We start defining the regular representation of a group on itself.

Definition 2.1.1. The (right) regular action of G on itself is the action given by
GxG—G, (z,9) —zxg=g 'z

The regular representation of G over S is the sheaf Og[G| endowed with the co-module

structure Og[G] £% O5[G] ® Og|G] induced by the right regular action of G on itself.
By definition ug is the composition

swap id®o

A
Os[G] — O5[G] ® Os[G] — Os[G] ® Os[G] — Os(G] ® Os[G]
Remark. We have chosen to define the regular action of G on itself by z x g = ¢ '«
instead of the more usual x x ¢ = xg because this makes computations natural in other

situations. Note that however these two actions are isomorphic.

In what follows, we will denote by &7 the regular representation.

Definition 2.1.2. Given a scheme T over S, a ramified Galois cover of group G, or

simply a G-cover, over it is a cover X —f—> T together with an action of G on it such
that there exists an fppf covering {U; — T'} and isomorphisms of G-comodules

We will call G-Cov(T) the groupoid of G-covers over T', where the arrows are the G-
equivariant isomorphisms of schemes over T'.
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2 Preliminaries on Galois covers.

The G-covers form a stack G-Cov over S. Moreover any G-torsor is a G-cover and
more precisely we have:

Proposition 2.1.3. BG s an open substack of G-Cov.

Proof. Given a scheme U over S and a G-cover X = Spec % over U, X is a G-torsor if
and only if the map G x X — X x X is an isomorphism. This map is induced by a
map B ® B Ny ) O[Gy] and so the locus over which X is a G-torsor is given by the
vanishing of Coker h, which is an open subset. O

In order to prove that G-Cov is an algebraic stack we will present it as a quotient stack
by a smooth group scheme.

Proposition 2.1.4. The functor

X
(Sch/S)°p < (Sets)
T algebra structures on oty
in the category of G-comodules

18 an affine scheme finitely presented over S.

Proof. Let T be a scheme over S. An element of X¢(T') is given by maps
oy & oy — oy, Op — oy

for which 7 becomes a sheaf of algebras with multiplication m and identity e(1) and such
that p is a homomorphism of algebras over Or. In particular e has to be an isomorphism
onto &/% = Op. Therefore we have an inclusion X¢ C Hom(W(& @ &), W()) x Gy,
which turns out to be a closed immersion, since locally, after we choose a basis of <7, the
above conditions translate into the vanishing of certain polynomials. O

Proposition 2.1.5. Aut® W() is a smooth group scheme finitely presented over S.
Proof. If T is an S-scheme, the morphisms
gogpe—H ¢

OT[G]V %MG(JM@)OT)
f (f®id)o A

where A and e are respectively the co-multiplication and the co-unit of Or|[G]|, are
inverses of each other. Since

W(0s[G]") = Hom(W(Os[G]), W(Os))

we obtain an isomorphism End® W(.) ~ W(Og[G]"), so that End® W(.¢#) and its open
subscheme Aut® W(?) are smooth and finitely presented over S. O
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2 Preliminaries on Galois covers.

Remark 2.1.6. Aut® W (/) acts on X¢ in the following way. Given a scheme T over S, a
G-equivariant automorphism f: @ — o/ and (m,e) € X (T) we can set f(m,e) for
the unique structure of sheaf of algebras on o/ such that f: (@, m,e) — (o, f(m,e))
is an isomorphism of Or-algebras.

Proposition 2.1.7. The map Xg — G-Cov, which sends a structure of algebra x €
Xg(T) on oy to the cover Spec(ety, x) — T is an Aut® W(e?)-torsor. In particular

G-Cov ~ [X¢g/ Aut® W(a)]
Proof. Consider a cartesian diagram

P—— Xg

L]

U T’ G-Cov

where U is a scheme and f: Y — U is a G-cover. We want to prove that P is an
Aut® W (/) torsor over U and that the map P — X is equivariant. Since 7 is an fppf
epimorphism, we can assume that f comes from Xq, i.e. f,Oy = @ with multiplication
m and neutral element e. It is now easy to prove that

Aut® W(a)) — P
hi > h(m,e)

is a bijection and that all the other claims hold. O

Using above propositions we can conclude that:
Theorem 2.1.8. The stack G-Cov is algebraic and finitely presented over S.

We want now to discuss some examples of G-covers. The simplest possible case, is
the trivial group G over Z: clearly, in this case, the G-covers are the isomorphisms and
G-Cov ~ SpecZ. Probably the following examples are more interesting.

Example 2.1.9. G = po = D(Z/2Z) over Z. This is very classical. A pg-cover over a
scheme T is given by an invertible sheaf £ over T with a morphism £2 — Op, where
the induced po-cover is Spec &, & = Op ® L. In particular

p2-Cov =~ [AY /G,
is smooth and irreducible.

Example 2.1.10. G = p3 = D(Z/3Z) over Z. In | , Lemma 6.2|, the authors
prove that the data consisting of invertible sheaves L1, Lo over a scheme T and maps
L'% — Eg,ﬁ% — L1 yields a unique algebra structure on Or @ L1 ® Lo. It is not
difficult to see (and we will prove in the next chapter)that all us-covers can be built in
this way. In particular

p3-Cov ~ [A? /G2 ]

is smooth and irreducible.
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2 Preliminaries on Galois covers.

In the next chapter, we will see that those cases and the case s x po are the unique
ones for which G-Cov has a similar description if G is diagonalizable (see 3.2.19 and
3.2.20). As a last example, we want to describe ay-covers. Remember that oy, is the
group scheme over [F,, representing the functor

ap: (Sch/Fp)? — (Sets), ap(X) ={z € Ox | 2P = 0} < G4(X)

or, equivalently, the kernel of the Frobenius map G, — G,. The result in this case is
quite unexpected from the definition.

Proposition 2.1.11. Let p be a prime. We have an isomorphism of F,-stacks
Ba, = a,-Cov >~ [A!/G,]

where the action of G, on Al is given by A x G, — A, (x,y) — x+yP. In particular
every oy,-cover is an oy-torsor and oy,-Cov is smooth and irreducible.

Proof. 1If S is an IF)-scheme an oy-action on a quasi-coherent sheaf F is given by a
morphism v: F — F such that 47 = 0 (see | , IL § 2, 2.7)). If (F,v) and
(F',7") are ay-equivariant quasi-coherent sheaves, the representation F @ F’ is given by
v ®id +id ® 4/. In particular if F has an algebra structure, the multiplication is -
equivariant if and only if v is an Og-derivation. In conclusion an ay-action on an affine
scheme X = Spec & over S is given by an Og-derivation 0: &/ —+ o such that 9?7 = 0.
Moreover it is easy to check that the regular representation is Oglay) = Og[z]/(2P) with
the usual derivation of polynomials.

We define the map ¢: A! — a,-Cov induced by the aj,-cover over Al = SpecF,|[2]
given by A = F,[z,y]/(y? — z) with the derivation d/0y. This is an «,-torsor because
the ring homomorphism

Alay] = Afz]/(2?) — A ®F, [z A = Alz]/ (2P — z) given by x — = — y

is an oy-equivariant isomorphism. Moreover note that, if R is a ring and a,b € R, then
the ajp-equivariant isomorphisms

Rla]/(« = a) = Rx]/(a” —b)
are all of the form ¢ (z) = x 4+ u, where u € R is such that a = b + u”. Therefore it
remains to prove that ¢ is an epimorphism. The question is local. So let R be a ring
and A € o)-Cov(R) with an R-derivation 0 such that A, as coy-module, is the regular
representation. In particular there exists a basis yo, 1, ...,yp—1 such that yo = 1 and
dy; = iy;—1, where we have set y_; = 0. It is easy to prove by induction that

ylf—yke <1,y1,...,y’f_1>R forall k=0,...,p—1

In particular we can write A ~ R[y]/(y? — f(y)) with 9y = 1 and deg f < p. Moreover
the relation 9y? = 0 = df(y) tells us that f =b € R, as required. O
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2 Preliminaries on Galois covers.

Example 2.1.12. Let k be a field of characteristic p > 0. We construct a cover f: Ai —
A,lg and actions of 1, and «;, on A}C such that f is invariant, it is a torsor for both groups
over Gy, , but f is not an ay-cover. This shows that for Galois covers the acting group
is not uniquely determined by the cover, as it happens in the étale case. Moreover,
the property of being a G-cover is not closed in general, while this is true, as we will
see, for linearly reductive groups (see 4.3.6). This example has been suggested by Prof.
Romagny.

As map f consider the inclusion k[zP] C k[z] = A. In particular A ~ k[zP][y]|/(y? — zP)
and the action of i, is given by setting degy = 1 € Z/pZ. 1t is easy to check by a direct
computation that f is a pp-torsor over G,,. The right action of oy, on A}g is functorially
given by the expression

ZKkS =

for z € Aj(T), s € ap(T), T € Sch/k

— sz
Note that the expression z*s = 2’ for z, 2’ € G,,,(T) is equivalent to s = (2’ — z) /22’ and
such s belongs to a,(7T) if and only if 27 = 2P that is f(z) = f(2/). In particular f is
an ay-torsor over G,,. The map f is not an ay-cover, or, equivalently, not an o,-torsor,
because 0x s =0 for 0 € AL(T), s € a,,(T), T € Sch/k.

2.2 The main irreducible component Z.

In this subsection we want to introduce what we will call the main irreducible component
of G-Cov. In order to do that we recall what is a schematic closure and some of its
properties.

Definition 2.2.1. Let A be an algebraic stack and &/ C X be an open substack. We
will say that U is schematically dense in X if for any factorization

U—z-x
where j is a closed immersion, j is an isomorphism.

Taking into account | , Theorem 11.10.5] and extending this result to algebraic
stacks by taking an atlas, we get

Proposition 2.2.2. Let X be an algebraic stack and U be a quasi-compact open substack.
Then there exists a minimum closed substack Z of X containingU and U is schematically
dense in Z. Moreover Z is the closed substack defined by the ideal Ker(Ox — Oy) andU
is topologically dense in Z. Finally, if f: X' — X is flat, then X' X yU is schematically
dense in X' xy Z.

Definition 2.2.3. If X, i and Z are as in 2.2.2, we will call Z the schematic closure of
Uin X.

Definition 2.2.4. We define the stack Zg as the schematic closure of B G in G-Cov and
we will call it the main irreducible component of G-Cov.
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2 Preliminaries on Galois covers.

Notice that, when the base scheme is irreducible, then Zx is an irreducible component
because BG C G-Cov is an irreducible open substack. The formation of Z5 commutes
with flat base changes of the base. Thus, if GG is defined over a field, Z5 commutes with
arbitrary base changes and it is therefore geometrically integral.

2.3 Bitorsors and Galois covers.

It is a well known result that G-equivariant quasi-coherent sheaves can also be thought
of as quasi-coherent sheaves on the stack B(G. In this section we want to use this point
of view in order to show examples of groups G and H for which G-Cov ~ H-Cov. The
idea is that such an isomorphism can be defined as soon as we have an isomorphism
¢: BG — B H, using the push-forward ¢, of quasi-coherent sheaves. We will meet this
situation when we will study (ug x Z/27)-covers and Ss-covers: in this section we will
prove that, over the ring Z[1/6], we have isomorphisms

B(pug % Z/2Z) ~ B S3 and (g x Z/27)-Cov ~ S3-Cov

The content of this section can also be found in | , Chapter III, Remarque 1.6.7].
We start showing that isomorphisms B G ~ B H correspond to what we will call (G, H)-
bitorsors. This correspondence works in great generality, that is as soon as we can talk
about torsors and we will present it from a categorical point of view. We refer to | ,
Part 1] for definitions and properties used in this section. In what follows we consider
given a site %, that is a category endowed with a Grothendieck topology. We assume
that the site € satisfies the following condition: given an object S € € there exists a set
of coverings U of S such that any covering of S is refined by some covering in ¢. This
condition insures that any functor ¥°? — (Sets) can be sheafified and it is satisfied by
the site Sch/S, where S is a scheme, with the fppf topology or the étale topology, which
is the case in which we will apply the theory explained below.
We introduce now the concept of (G, H)-biactions and (G, H)-bitorsors.

Definition 2.3.1. Let G: €? — (Grps) be a sheaf of groups. We will denote by
Sh¢ /% the fibered category of sheaves over ¢ with a right G-action. The left (resp.
right) regular action of G on itself is the left (resp. right) action given by

GxG— G, (g,h) — gh

A left (resp. right) G-torsor is a sheaf P: €°P — (Sets) with a left action G x P — P
(resp. right action P x G — P) for which P is locally isomorphic to G endowed with
the left (resp. right) regular action.

If H is another sheaf of groups ¢ — (Grps), a (G, H)-biaction on a sheaf P: ¢P —
(Sets) is a pair (Gx P - P, Px H — P) where u and v are, respectively, a left G-action
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2 Preliminaries on Galois covers.

and a right H-action on P, such that the following diagram is commutative.

uXidH
GxPxH Px H
JidGXU Jv
GxP - P

A (G, H)-bitorsor is a sheaf P: € — (Sets) with a (G, H)-biaction for which P is
both a left G-torsor and a right H-torsor. Denote by B(G, H) the fibered category over
¢ of (G, H)-bitorsors.

Remark 2.3.2. Note that the right regular representation introduced above differs from
the one introduced in 2.1.1. The above definition will be used only in this section because
it will simplify the exposition. On the other hand, since the two actions are isomorphic,
it is clear that the results obtained below are independent of the choice of the regular
representation to use.

Remark 2.3.3. The fibered category B(G, H) is a stack over ¥. This is easy to prove
directly, using the fact that (Sh /%), the fibered category of sheaves of sets over €, is a
stack (see | , Part 1, Example 4.11]). Otherwise this can be seen as consequence
of the isomorphism proved in 2.3.7.

Remark 2.3.4. Given a left G-action u: P x G — P and a right H-action v: P X
H — P | the pair (u,v) is a (G, H)-biaction if and only if the homomorphism G —
Aut P induced by u factors through Aut? P, that is if G acts through H-equivariant
isomorphisms.

Remark 2.3.5. Let G be a sheaf of groups over €. If X € (Sh” /%) there always exists
a categorical quotient X — X/G, that is a map through which all the G-invariant
maps X — Y, where Y is a sheaf, uniquely factor. Indeed the quotient X/G is the
sheafification of the functor 7 — (Sets) that associates with an object S the set
X (S)/G(S). In particular, if H is another sheaf of groups, T' € ¢ and P € B(G, H)(T),
X x P has a right action of G given by (x,p)g = (zg,¢ 'p) and we can consider the
quotient (X x P)/G, which has a right H-action induced by the one of P.

Proposition 2.3.6. Let G and H be sheaves of groups over €. Then the association

B(G, H) Isoy ((Sh¥ /), (Sh! /)
P (X — (X x P)/G)

is a functor of fibered categories. If T € €, X € (ShG JE)T), GXxT ~HxXT and P is
a trivial (G, H)-bitorsor over T', then there exists a natural isomorphism Ap(X) ~ X as
objects of €.

The proof of the above statement is not difficult and left to the reader.
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Proposition 2.3.7. The functor A of 2.3.6 induces an isomorphism B(G, H) — Iso(BG,B H)
whose inverse is given by ¢ — ¢(G), where the left G-action on ¢(G) is given by

G ~ Awt® G ~ Aut?! ¢(G). In particular (G, H)-bitorsors are H-torsors P with an
isomorphism G ~ Aut” P.

Proof. The only non trivial point is showing the existence of an isomorphism Ay ) ~ ¢.
This is induced by the map

Q x ¢(G) =~ Hom“(G, Q) x 6(G) — #(Q)
for Q € (Sh® /%), functorially in Q. O

Corollary 2.3.8. Let G be a sheaf of groups over €. Then the sheaves of groups H for
which there exists an isomorphism B H ~ B G are the sheaves Awt® P for P € BG.

We now want to describe two examples of non trivial bitorsors.

Example 2.3.9. If G and H are sheaves of groups of € set P = Iso(G, H). The maps
AutG x P — P, P x Aut(H) — P, both given by (¢,1) — ¢ o

induce a (Aut G, Aut H)-action on Iso(G, H) and, if G and H are locally isomorphic,
then Iso(G, H) is a (Aut G, Aut H)-bitorsor. In particular, in this case, we obtain an
isomorphism

BAut(G) ~ BAut(H)
The second bitorsor we want to describe is a refinement of the previous one.

Proposition 2.3.10. Let G and H be sheaves of groups €°P — (Grps) and set P =
G x Iso(H,G). The maps

Px(HxAut H) — P, (GxAut G)x P — P, both given by (z,¢)-(y,v¥) = (zd(y), p1b)

define a (G xAut G), (H x Aut H))-action on P and, if G and H are locally isomorphic,
then P is a (G x Auwt G), (H x Aut H))-bitorsor. In particular, in this case, we have an
isomorphism

B(G x AutG) ~ B(H x Aut H)
and, if Ap: (ShFAWE j@y _y (SWHT*AWH /2y 45 the functor defined in 2.3.6, we have
a canonical isomorphism

(X/Aut G) ~ (Ap(X)/Aut H) for all X € (ShE*AUE /@)

Proof. A direct computation shows that the maps in the statement yield compatible
actions. Moreover, if v: G — H is an isomorphism, it is also straightforward to check
that the maps g — ¢+ and h — - h are equivariant isomorphisms G x Aut G — P
and H x Aut H — P respectively. Finally consider the map

m: X X P=X x G xIso(H,G) — X given by n(z,g,¢) = z(g,idg)
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It is easy to check that 7(z(u,?)) = 7(2)(1g,¢) and w(2(1x,0)) = 7(2) for all (u,?) €
G x Aut G and (1y,d) € H x Aut H. In particular 7 yields a map (Ap(X)/Aut H) —
(X/Aut G). This is an isomorphism since it is so locally, i.e. when we have an isomor-

phism H %, G: in this case the inverse is given by x — (x,1g, ¢). O

Example 2.3.11. Consider the group G = u,, and H = Z/nZ over Z[1/n]: they are
étale locally isomorphic and therefore

B(un % (Z/nZ)*) ~ B(Z/nZ x (Z/nZ)*)
In particular for n = 3 we get B(us x Z/2Z) ~ B Ss.
This is the connection with the theory of Galois covers.

Theorem 2.3.12. Let G and H be flat, finite and finitely presented group schemes over
a base scheme S. If P is a fppf (G, H)-bitorsor over S, the functor Ap of 2.53.6 induces
an isomorphism

Ap

G-Cov H-Cov
X+ (X xP)G

In particular, given an S-scheme Y and X € G-Cov(Y'), the cover X — Y (resp. the
S-scheme X ) is fppf locally isomorphic to the cover Ap(X) — Y (resp. the S-scheme
Ap(X)) and therefore they share all the properties that are local and satisfy descent in
the fppf topology. Moreover if G or H is étale, the same conclusion follows for the étale
topology.

Proof. 1t is enough to note that, if X € G-Cov(Y') and P is trivial, a section of P induces
an isomorphism p: H — G and Ap(X) is isomorphic to X with the H-action obtained
from its G-action through pu. O

Remark 2.3.13. Let G and H be affine group schemes with an isomorphism ¢: BG —
B H. Since QCohg ~ QCohp s and similarly for H, the pushforward ¢, induces an
isomorphism QCoh§ ~ QCoh#. If ¢ corresponds to the (G, H)-bitorsor P = Spec.a/p
over S it is possible to check that we have an isomorphism

0o F ~ (F @ alp)?

where the H-action is induced by the one over @7p.
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3 Galois Covers under diagonalizable
group schemes.

The aim of this chapter is to study the theory of G-covers in the diagonalizable case. Let
G be a finite diagonalizable group scheme over Z. We now briefly summarize how this
chapter is divided.

Section 1. The stack G-Cov and some of its substacks, like Z5 and B G, share a
common structure, i.e. they are all of the form Xy = [SpecZ[T]/T], where T is a
finitely generated commutative monoid whose associated group is free of finite rank, T
is a torus over Z and ¢: Ty — Z" is an additive map, that induces the action of 7 on
Spec Z[T+]. The first section will be dedicated to the study of such stacks. As we will
see many facts about G-Cov are just applications of general results about such stacks.
For instance the existence of a special irreducible component Z, of X as well as the use
of TY = Hom(T,N) for the study of the smooth locus of Z4 are properties that can be
stated in this setting.

Section 2. We will explain how G-Cov can be viewed as a stack of the form &} and
how it is related to the equivariant Hilbert schemes. Then we will study the properties
of connectedness, irreducibility and smoothness for G-Cov. Finally we will introduce the
stratification BG =Uy CU; C--- C U|G‘_1 = (G-Cov and we will characterize the locus
Uj.

Section 8. We will study the locus Us and G-covers whose total space is normal crossing
in codimension 1.

3.1 The stack Xj.

In the following sections we will study the stack G-Cov when G = D(M), the diagonal-
izable group of a finite abelian group M. The structure of this stack and of some of its
substacks is somehow special and in this section we will provide general constructions

and properties that will be used later. To a monoid map 7% N 7", we will associate
a stack Xy whose objects are sequences of invertible sheaves with additional data and
we will study particular 'parametrization’ of these objects, defined by a map of stacks
Fe N Xy, where F¢ will be a "nice’ stack, for instance smooth.

In this section we will consider given a commutative monoid 7 together to a monoid
map ¢: T — Z".

Definition 3.1.1. We define the stack X over Z as follows.

e Objects. An object over a scheme S is a pair (£, a) where:

31



3 Galois Covers under diagonalizable group schemes.

— L=Ly,...,L, are invertible sheaves on 5;

— Ty -% Sym” £ is an additive map such that a(t) € £°® for any t € T',..

e Arrows. An isomorphism (£, a) — (£',a’) of objects over S is given by a sequence
o =o01,...,0, of isomorphisms o;: £; — L), such that

oD (a(t)) = d'(t) for any t € Ty

Example 3.1.2. Let f1,..., fs,91,...,9: € Z" and consider the stack Xy, of invertible

sheaves L1,...,L, with maps O — L and O = L%, If T, = N* x Z' and
¢: T4 — Z" is the map given by the matrix (f1]---[fs[g1|---|g:) then Xy, = Xy.

Notation 3.1.3. We set
Z[T+] = Z[xt]teT_;,_/(xtht’ — Ty TQ — 1)

and Og[Ty] = Z[T+] ®z Og. The scheme Spec Og[T'] over S represents the functor
that associates to any scheme U/S the set of additive maps 7y — (O, ), where -
denotes the multiplication on Op. The group D(Z") acts on Spec Z[T'y] by the graduation

degzy = ¢(t).
Proposition 3.1.4. Set X = SpecZ[T]|. The choice L; = Ox and

a(t)

> Lt

induces a smooth epimorphism X — Xy such that Xy ~ [X/D(Z")]. In particular Xy
1 an algebraic stack.

Proof. 1t is enough to note that an object of [X/D(Z")|(U) is given by invertible sheaves
L1,...,L, with a D(Z")-equivariant map SpecSym' £ —s SpecZ[T}] which exactly
corresponds to an additive map T, — Sym* L as in the definition of Xy. It is easy to
check that the map X — [X/D(Z")] — A&, is the one defined in the statement. O

Remark 3.1.5. Given a map U -+ X = SpecZ[T;], i.e. a monoid map Ty - Oy, the
induced object U - X —» Xy is the pair (£, a) where £; = Oy and for any ¢t € T

a(t) »alt)

We will denote by a also the object (£, a) € Xy(U).
Given two elements a,b: T, — Oy € Xy(U) we have

Tsox, ) (a,b) = {o1,...,00 € Of | c®Pa(t) = b(t) Vt € T, }
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Lemma 3.1.6. Consider a commutative diagram

T+ L T-/F

¢ v

7r — 77

where T4, T", are commutative monoids and ¢, ¥, h, g are additive maps. Then we
have a 2-commutative diagram

*

Spec Z[T,] Spec Z[T]
X, A X,

(L, T = Sym” L) (M, Ty > Sym” M) (3.1.1)

where, fori=1,...,r, M; = L£9€) and b is the unique map such that

g(v)

Ty Sym* M MV~

| LA

Ty Sym” L L9

o

a

Proof. An easy computation shows that there is a canonical isomorphism M? ~ £9()
for all v € Z" and so b(t) corresponds under this isomorphism to a(h(t)) € L¥*1) =
L9 (@) ~ M¢(t). So the functor A is well defined and we have only to check the commuta-
tivity of the second diagram in the statement. The map SpecZ[T", | — Spec Z[Ty] —

Xy is given by trivial invertible sheaves and the additive map

T, - Z[T{][z1,- .., xr]l—[i 2t LT [, ’xT’]Hi ;
(0 J 0
Instead the map Spec Z[T" | — X, — X} is given by trivial invertible sheaves and the
map b that makes the following diagram commutative

b

T: ZIT [z, 2], a2y 2

g |
Tjr Z[T-/i—] [y17 s ysh—[Z yyg(’u)
tl sy
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3 Galois Covers under diagonalizable group schemes.

Since mh(t)x¢(t) is sent to xh(t)y9(¢(t)) = xh(t)yd’(h(t)) = a(h(t)) we find again b(t) =
:ch(t)xd’(t). O
Remark 3.1.7. The functor X, — X sends an element a: T, — Oy € Xy (U) to the

element a o h € Xy(U). Moreover, taking into account the description given in 3.1.5, if
a,b: T, — Oy € Xy(U) we have

Isoy(a,b) — Isoy(ao h,bo h)

g | > gg(el)7.."gg(e7”)

3.1.1 The main irreducible component Z; of X.

Notation 3.1.8. A monoid will be called integral if it satisfies the cancellation law, i.e.
VYa,b,c, a+b=a+c = b=c

Let T’y be a monoid. There exists, up to a unique isomorphism, a group 7" (resp. integral
monoid Ti"t) such that any monoid map T — S, where Sy is a group (resp. integral
monoid), factors uniquely through 7" (resp. Ti”t). We call it the associated group (resp.
associated integral monoid) of Ty. Notice that if T is the associated group of T, then
Im(Ty — T) can be chosen as the associated integral monoid of 7. We will continue
to denote by T the associated group of Ty and we set Tj_”t =Im(Ty — T)CT. In
particular ("), = T.

From now on T will be a finitely generated monoid whose associated group is a free
Z-module of finite rank. In order to simplify notation, we will often write ¢: T —> 77,
meaning the extension of ¢: Ty — Z" to T. Anyway, the stack X will always be the
stack X7, _.z- and when we will have to consider the stack Xp__.zr, we will always
specify a different symbol for the induced map T — Z.

Remark 3.1.9. If D is a domain, then Spec D[T] is an open subscheme of Spec D[T%],
while Spec D[T%"] is one of its irreducible components. In particular we have

Proposition 3.1.10. Let ngbz T — Z" be the extension of ¢ and set ¢ = QAS|Tj~rm.
Then By = X(i; — Xy is an open immersion, while Z4y = Xyn — Xy is a closed one.
Moreover Zy is the reduced closed stack associated to the closure of By, it is an irreducible
component of Xy and

By ~ [Spec Z[T]/D(Z")] and Z4 ~ [Spec Z[T'™]/D(Z")]

Definition 3.1.11. With notation above we will call respectively By and Z the principal
open substack and the main irreducible component of Xy.

Notation 3.1.12. We set

TY = Hom(T},N) = {€ € Homgroups(T Z) | £(T}) € N}
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3 Galois Covers under diagonalizable group schemes.

We will call it the dual monoid of Ty and we will call its elements the rays for T'y. Note
that T = Ti”tv. Given £ = €',...,&% € TY we will denote by £ also the induced map
T — 7Z°. Moreover we set

Supp€ = {v € Ty | Ji E'(v) > 0}

Finally notice that the dual monoid of a group is always 0. Therefore, when H is an
abelian group, the dual HY of H will always be the dual as Z-module.

Definition 3.1.13. Given a sequence £ = EY,...,E% € TY set

agg

N T VARGV
(e’ia 0) }—} (Ei, 0)

(0,8) = (E(1), —0(1))

where ey, ..., e is the canonical basis of Z*. We will call Fg = A,

Remark 3.1.14. An object of Fg over a scheme U is given by a sequence (£, M, z, \)
where:

o L=L1,....L, and M = (Mg)gecg = M;,..., M, are invertible sheaves on U;
o 2= (2¢)ece = #1,..., 25 are sections z; € M;;

e for any t € T, A(t) = \; is an isomorphism £¢® — ME® additive in t.

An isomorphism (£, M, 2, \) — (L', M', 2/, ) is a pair (w,7) wherew = w1, ..., w,, T =
. . ; 7
T1,...,Ts are sequences of isomorphisms £; — L, M; — M, such that 7;(z;) = 2}

and for any ¢t € T' we have a commutative diagram

£90 21 E®
wt® | | ze®
At
L) — AEWD)

!

An object over U coming from the atlas SpecZ[N® @ T is a pair (z,A) where z =
Z1,...,2s € Oy and A\: T — Of; is a group homomorphism. Given (z, ), (2/,\) €
Fe(U) we have

Isop ((z,A), (2, X)) = {(w, ) € (OF)" x (0F)* | 7izi = 2, T2OA(t) = N (1)}
Definition 3.1.15. Given a sequence & = &',...,&° of elements of TY we define the

map
g Fg — Xy
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3 Galois Covers under diagonalizable group schemes.

induced by the commutative diagram

t T+ 7"

L |

E®,-t) N T 7° e 7"

og

Remark 3.1.16. We can describe the functor m¢ explicitly. So suppose we have an object
X = (L,M,z,)) € Fg(U). We have mg(x) = (£,a) € Xy(U) where a is given, for any
te T+, by

L0 20 \EW

alt) | £(1)

' 2
Moreover, if (w,7) is an isomorphism in Fg, then mg(w, 1) = w.
If (z,\) € Fg(U) then a = mg(z, \) € Xy(U) is given by

T+ OU
t— 0N, = Zlgl(t) 28O,

Remark 3.1.17. If £ = (£%);er is a sequence of elements of TY, J C I and we set
d = (€7)jes we can define a map over X, as

p

Fs Fe M’—{Mz’ z'eJZ,_{zi ielJ
(LM 2, M) - (L, M2 N O i¢gJ ™ LoigJ

In fact p comes from the monoid map T'® N/ — T @ N7 induced by the projection.

Moreover p is an open immersion, whose image is the open substack of Fg of objects

(L, M, z,\) such that z; generates M; for all i ¢ J. We will often consider F; as an
open substack of Fg.

Definition 3.1.18. Given a sequence £ = £, ..., E® of elements of TJY we define

T8 =775 = {y e T|Vi E'(v) > 0}
We also consider the case s = 0, so that Tf = T. If we denote by qB: Tf — Z" the
extension of ¢, we also define X(f = ij = Xq;.

Remark 3.1.19. Assume we have a monoid map Ty — T (compatible with ¢ and ¢’)
inducing an isomorphism on the associated groups. If £ = &,...,5 € T" i C T, then
we have a 2-commutative diagram

f—— Fg

e

Xy —— Xy

3
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3 Galois Covers under diagonalizable group schemes.

where F¢ is the stack obtained from T" with respect to £.

Proposition 3.1.20. The map ©g: Fg — Xy has a natural factorization
.FQ — Xf — Z¢ — X¢

Proof. The factorization follows from 3.1.19 taking monoid maps Ty — Ti”t — Tf.
O

Remark 3.1.21. This shows that g has image in Z4.We will call with the same symbol
mg the factorization Fg — Zy.
We want now to show how the rays of Ty can be used to describe the objects of Z,

over a field. Using notation from 3.1.5, the result is:

Theorem 3.1.22. Let k be a field and Ty — k € Xy(k). Then a € Z4(k) if and only
if there exists a group homomorphism A : T — k and € € TY such that

a(t) = \0°®

In particular if E =&, ...,E" generate TY ® Q then mg: Fg(k) — Z4(k) is essentially
surjective and so mg: |Fg| — |24| is surjective. Finally, if the map ¢: T — Z" is
jective, we have a one to one correspondence

Za( )/zl{XQT+]XzSuppEforEET_X}
al -+ {a =0}

In particular |2y) = (25@)/ =) U Upsimes p(Z6(F)/ )]

Before proving this Theorem we need some preliminary results, that will be useful also
later.

Definition 3.1.23. If T is integral, & € T} and k is a field we define
be = @ k'rv - k[T—i—]
veTL ,E(v)>0
If p € Spec k[T ] we set p°™ = D, ¢, kTv.

The suffix (—)°" here stays for ’homogeneous’, since, when Ty = N" and k[T] =
klx1,...,z], p°" is a homogeneous ideal, actually a monomial ideal.

Lemma 3.1.24. Let k be a field and assume that Ty is integral. Then:

1) if E € TY, pe is prime and k[{v € T; | E(v) = 0}] — k[T}] — k[T4]/pe is an
isomorphism.

2) If p € Speck[T}] then p°™ = pg for some € € TY.
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3 Galois Covers under diagonalizable group schemes.

Proof. (1) It is obvious.
(2) p°™ is a prime thanks to | , Proposition 1.7.12] and therefore p°™ = pg for
some & € T thanks to | , Chapter I, Corollary 2.2.4]. O

Remark 3.1.25. If k is an algebraically closed field, ¢: T — 7Z" is injective and a,b €
Xy (k) differ by a torsor, i.e. there exists A\: Ty — k* such that a = A\b, then a ~ b
in Z4(k). Indeed X extends to a map 7" — k* and, since k is algebraically closed, it
extends again to a map \: Z" — k™.

Proof. (of Theorem 3.1.22) We can assume that k is algebraically closed and that 7% is
integral, since if a has an expression as in the statement then clearly a € Z4(k). Consider
p = Ker(k[T}] =% k). Thanks to 3.1.24, we can write p°™ = pg for some £ € TY. Set
T, ={veTy|&w) =0}and T = (T} )z. Since a maps T to k*, there exists an
extension \: T" — k*. On the other hand, since k is algebraically closed, the inclusion
T' — T yields a surjection

Hom(T, k*) — Hom(T", k*)

and so we can extend again to an element A\: T — k*. Since one has Supp & = {a = 0}
by construction, it is easy to check that a(t) = \,0¢® for all ¢t € T, .

Now consider the last part of the statement and so assume ¢: T — Z" injective. The
map 7y is well defined thanks to above and surjective since, given £ € T'Y, one can always
define a(t) = 0°®*). For the injectivity, let a,b € Z,(k) be such that {a = 0} = {b = 0}.
We can write a(t) = \0Z®, b(t) = 1,05, where A\, u: T — k*, so that a,b differ by
a torsor and are therefore isomorphic thanks to 3.1.25. Finally, since any point of |Z4|
comes from an object of Z4(Z), we also have the last equality. O

In some cases the description of the objects of F¢ can be simplified, regardless of £, in
the sense that there exist a stack of reduced data ]-"ged, whose objects can be described
by less data, and an isomorphism Fg ~ fged. This kind of simplification could be very
useful when we have to deal with an explicit map of monoids ¢: Ty — Z", as we will
see in 3.2.7. The idea is that in order to define an object (£, M, 2, \) € Fg, we do not
really need all the invertible sheaves L1, ..., L,, because they are uniquely determined
by a subset of them and the other data.

Definition 3.1.26. Assume T 25 7" injective. Let V' C Z" be a submodule with a
given basis v1,...,vg and o: Z" — V be a map such that (id—o)Z" C T (or equivalently
m = 7o o where 7 is the projection Z" — Coker ¢). Define W = ((id — o)V, oT) C V.
Given & = &', ... &' € TY consider the map

wé,o

W e N VAREYA
(w,z) —— (—w,E(w) + 2)

We define féed’a = Xy, and we call it the stack of reduced data of £.
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3 Galois Covers under diagonalizable group schemes.

Lemma 3.1.27. Consider a submodule U C 7P, a map £: U — Z' and 7: 7P — 7P
such that (id — 7)ZP C U. Consider the commutative diagram

Thid

(u, z) UoN UaN

[ |#
(—wé(u)+2)zP 7l —— 7P o 7!
(u,2) - (Tu, E(u — Tu) + 2)

Then the induced map p: Xy — Xy is isomorphic to idx,.

Proof. Let x1,...,x, be a Z-basis of Z” with a1,...,a; € N such that ajx1,...,apz is
a Z-basis of U. We want to define a natural isomorphism idyx, — . First note that it
is enough to define it on the objects of X, coming from the atlas Spec Z[U @® N'], prove
the naturality between such objects on a fixed scheme T and for the restrictions. An
object coming from the atlas is of the form (A, z) where \: U — O} is an additive map
and z = z1,...,2 € Op. Moreover ¢(\,z) = (\,z) where A = Ao 7. Let 5 € D(ZP)(T)
the only elements such that n* = X\(z; — 7a;) for i = 1,...,p. These objects are
well defined since (id — 7)Z° C U. We claim that Wr,(rz) = (1,1) is an isomorphism
(A, 2) — ¢(A, 2) and define a natural transformation. It is an isomorphism since 1z; = z;
and the condition

n1EW N\ (u) = A(ru) Yu € U

holds by construction checking it on the basis ajx1,...,arxy of U (see 3.1.5). It is also
easy to check that this isomorphisms commute with the change of basis. So it remains
to prove that, if (g, u) is an isomorphism (A, z) — (X, 2’) then we have a commutative
diagram B

(o,1)
(A 2) — s (X, 2)

w(a,m)

wr,(X,z2) J l“’mx’,z’)
Az) — o\, 2)

[

o(

We have (g, p) = (¢, i) with i = p and 6% = o™i pE@i=T) (see 3.1.7). So it is easy

to check that the commutativity in the second member holds. For the first, the condition
is a1 = n'o, which is equivalent to

(Gn)% = o™ pE@ T N (@; — 1) = (' 0)% = N (2 — T2;) 0"

and to g~ @i—T@)  E@i=TT) \ (g — ;) = N (x; — Ta;) for any i. But, since (o, i) is an

isomorphism (A, z) — (X, 2’), the condition
g_uﬁé(“))\(u) =N(u)VueU

has to be satisfied. O
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3 Galois Covers under diagonalizable group schemes.

Proposition 3.1.28. Assume T N/ injective and let & = E,...E" € TY and
o, V, v1,...,vq4 be as in 3.1.26. For appropriate choices of isomorphisms \ given by
3.1.6, the functors

((Maei ® Mé(ei_aei))izl,...,mMa 2, 5\) — (M’ M, z, )\)
J,—_~§ ]:-éed,o
(év M, 2, >\) — ((évi)iZI,...,Q7My 2, )\|W)

are inverses of each other.

Proof. Consider the commutative diagrams

id
WaeN T g NS Ten —22  weNs
wl J@ ¢>£l Jw
ST T @ T8 7 ez 79 & 7°

(x,y) —— (0w, E(x — o) +y)

They induce functors A: Fg — ]:éed’o and A: ]:éed’a — JFg respectively, that behave
as the functors of the statement thanks to the description given in 3.1.6. Finally, applying
3.1.27, we obtain that Ao A ~id and Ao A ~id. O

3.1.2 Extremal rays and smooth sequences.

We continue to use notation from 3.1.8. We have seen that given a collection £ =
g & € T we can associate to it a stack Fg and a ’parametrization’ map Fg — Xj.
The stack Fg could be 'too big’ if we do not make an appropriate choice of the collection
£. This happens for example if the rays in £ are not distinct or, more generally, if a
ray in £ belongs to the submonoid generated by the other rays in £. Thus we want to
restrict our attention to a special class of rays, called extremal and to special sequences
of them.

Definition 3.1.29. An extremal ray for T, is an element £ € T such that
e £ has minimal non empty support, i.e. the set Supp & C T, is minimal in

({XCTy| X #0and X = Suppd for some § € TV}, C)

e & is normalized, i.e. £: T — 7Z is surjective.

Lemma 3.1.30. Assume that T4 is an integral monoid and let vy, ..., v; be a system of
generators of Ty. Then the extremal rays are the normalized £ € T\ — {0} such that
Ker & contains tkT — 1 Q-independent vectors among the vi,...,v;. In particular they

are finitely many and they generate QT .
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3 Galois Covers under diagonalizable group schemes.

Proof. Denote by Q C T the set of elements defined in the statement. From | ,
Section 1.2, (9)] it follows that Q4 Q = QTY. If £ € Q then it is an extremal ray. Indeed

() # Supp& C SuppE = IN€ Q) s.t. & =X = Supp& = Suppé&
Conversely let £ be an extremal ray and consider an expression

&= Z Asd with As € Q>0
60

There must exists § such that A\s # 0. So

Suppd C Supp& = Suppd =Suppé — FJp€eQist. E=pd = £=90

Corollary 3.1.31. For an extremal ray € and £ € TY we have
Supp& = Supp€ <= IN€Qy s.t. &' =X <= INEN, s.t. & =X

Definition 3.1.32. An element v € T is called indecomposable if whenever v = v’ + 0"
with v/, 0" € T it follows that v' = 0 or v/ = 0.

Proposition 3.1.33. T has a unique minimal system of generators composed by the
indecomposable elements. Moreover any extremal ray is indecomposable.

Proof. The first claim of the statement follows from | , Chapter I, Proposition 2.1.2]
since TJY is sharp, i.e. it does not contain invertible elements. For the second consider
an extremal ray £ and assume £ = £ + £”. We have

Supp &, SuppE” C SuppE = &' =N, E" = p€ with \,u € N

andsoE =N+ p)é = A+pu=1 = A=0o0rpu=0 = & =00r&" =0. O

Definition 3.1.34. A smooth sequence for Ty is a sequence & = £Y,...,E° € T for
which there exist elements v1,...,vs in the associated integral monoid T}r"t of T, such
that

T NKerE generates Ker & and E'(vj) = 6 for all 4, j

We will also say that a ray & € TY — {0} is smooth if there exists a smooth sequence
as above such that £ € (€1,...,E%)y or, equivalently, such that Supp & C Supp &.

Remark 3.1.35. If T is integral and ) is a system of generators, one can always assume
that v; € 2. Moreover we also have that 2 N Ker £ generates Ker €.

Finally the equivalence in the last sentence of Definition 3.1.34 follows from the fact
that, since Ker & is generated by elements in Tj”t, then the inclusion of the supports
implies that & kerg = 0 and therefore £ =7, £(v;)E".
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3 Galois Covers under diagonalizable group schemes.

Lemma 3.1.36. Let £E=E',...,E" be a smooth sequence. Then

Tf: KerE @ (v1,...,v)n C T where vy ..., v, € Ti”t, €i(vj) =0;;

Moreover, if z1,...,2s € T" generate T, then Z[Tf] = Z[Ti"t]né(%):o z., S0 that
Spec Z[T_%] (X(f) is a smooth open subscheme (substack) of Spec Z[T] (Zy).

Proof. We have T' = Ker £ & (v1, ..., v,)z and clearly Ker £ & (vq,...,v4)n C T_% Con-

versely if v € Tf we can write

v = z+Z€i(U)vi with z € Kerf = veKerE® (v1,...,v4)N

(2

In particular Spec Z[Tf] ~ A} x Dz(Ker &) and so both Spec Z[T_%] and X(f are smooth.
Now let '
I={i|&(z)=0}and Sy = (T, —z forieI)CT

We need to prove that S; = T f Clearly we have the inclusion C. For the reverse
inclusion, it is enough to prove that — Ker £ N T C Sy. But if v € Ker £ N T then

v:zs:ajzj:z:ajzj = —veSt
j=1

jel
]

Remark 3.1.37. Any subsequence of a smooth sequence is smooth too. Indeed let § =
EL ..., &% a subsequence of a smooth sequence £ = £Y,...,E", with r > s. We have to
prove that (Kerd N Tj"r"t>z = Kerd. Take v € Kerd. So

T
v — Z €j(v)vj € Ker€ = (KeréﬂTi"tm C (Kerd N Ti"tm — v e (Kerdn Tjrntm
Jj=s+1

Proposition 3.1.38. Let £ € TY. Then & is a smooth extremal ray if and only if € is
a smooth sequence composed of one element, i.e. KerEN Ti”t generates Ker & and there
exists v € Ty such that E(v) = 1.

In particular any element of a smooth sequence is a smooth extremal ray.

Proof. We can assume T integral. If £ is smooth and extremal, then there exists a
smooth sequence £',... &% such that £ € (£',...,E9)y. Since £ is indecomposable, it
follows that £& = &£’ for some i. Conversely assume that € is a smooth sequence. So
it is smooth by definition and it is normalized since £(v) = 1 for some v. Finally an
inclusion Suppd C Supp € for § € TY means that 6 € (£)y, as remarked in 3.1.35, and
so Suppd = () or Suppd = Supp€. O

We conclude with a lemma that will be useful later.
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Lemma 3.1.39. Let T, T' be integral monoids and h: T — T' be a homomorphism
such that h(Ty) =T, and Kerh = (Ket hNTy). IfE=E',..." € T" then

£ smooth sequence for TJ'r <= &£ o h smooth sequence for Ty

Proof. Clearly there exist v; € T, such that £ “(vj) = &;,; if and only if there exist w; € T}y
such that £ o h(w;) = d; ;. On the other hand we have a surjective morphism

Ker€oh/(Ker€ohNTy)z — KerE/(Ker ENTY )z,

In order to conclude it is enough to prove that this map is injective. So let v € T such
that
h(v) = Zajzj with aj € Z, z; € Ty, E(zj) =0
J
Since h(T%) = TY, there exist y; € T such that h(y;) = z;. In particular y = > a;y; €
(KerEohNTy)z and

v—y€eKerh=(KerhnNT}) C(Ker€ohNTy)

3.1.3 The smooth locus Z5" of the main component Z;.

Lemma 3.1.40. Let £ = EY,...,&% be a smooth sequence and x be a finite sequence of
elements of TY. Assume that all the elements of x are distinct, each E'is an element of
x and that for any § in x we have

S, &y = Fis=¢&"

As usual denote by m, the map F,, — Xy. Then we have an equivalence

Fe=m (D) = &5
Proof. Set x = &Y,.... &0, ... .t = £,1n. We first prove that W;I(X(f) C Fg. Since
they are open substacks, we can check this over an algebraically closed field k. Let

(z,A) € W;I(Xf) so that a = m,(z,\) = 25/\: Ty — k by 3.1.16. We have to prove
that z,, # 0. Assume by contradiction that z,, = 0. Since we can write a = b0 and

since a extends to Tf so that a(t) # 0if t € T, NKer £, we have that 7; is 0 on Ty NKer &.
In particular

Suppn’ C SuppE = 1/ € (E},..., 8Ny = Fin) =&

Thanks to 3.1.17, it is enough to prove that if £ is a smooth sequence such that
T, = T_% then 7¢ is an isomorphism. By 3.1.36 we can write 1T = W @ N9, where W is
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3 Galois Covers under diagonalizable group schemes.

a free Z-module such that QW = 0 and, if we denote by vy, ..., v, the canonical base of
N4, &7 (v;) = 6; j. Consider the diagram

NI @ T T,
I Il
NQ@W@ZQLW@NQ .
{ { y(ei) = vi, yyw = —idw, y(vi) =0
[

5(61) = qb(v@-), 5|Zr = ier

og

VARGV

ZT

One can check directly its commutativity. In this way we get a map s: Xy — Fg. Again
a direct computation on the diagrams defining s and mg shows that 7g o s ~ idx, and
that the diagram inducing G = s o ¢ is

NaWazZ SN aWa7Zl
[ [ a(e;) = e; — v, oy = 1idw, aze =0
oe

Blei) = ¢(vi), Bzr = idzr
VARSY/A

VANV

We will prove that G ~ idr.. An object of Fg(A), where A is a ring, coming from the

atlas is given by a = (2, A\, pu): N9 @ W @ Z? — A where z = (a(e;)); = 21,...,24 € A,
A=aw: W — A"is a homomorphism and = (u(vi))i = p1...,pqg € A*. Moreover
Ga = aoais ((zi/pi)i, A 1). It is now easy to check that (u,1): Ga — a is an
isomorphism and that this map defines an isomorphism G — id;g. O

Corollary 3.1.41. If £ is a smooth sequence then mg: Fg — Zy is an open immersion
with image Xf.

It turns out that if £ is a smooth sequence, then X (f has a more explicit description:

Proposition 3.1.42. Let £ = &',...,&" be a smooth sequence, k be a field and a €
Xy(k). Then

0 € XE(R) <= FE € (€. &, M T — K st a=\0F
Moreover if NOF € Xf(k), for some E€TY, \: T — &', then € € (E1,...,EMn.

Proof. We can assume k algebraically closed and 7. integral. In this case a € Xf(k)
if and only if a: Ty — k extends to a map Ker£ & N" = Tf — k. So < holds.
Conversely, from 3.1.22, we can write a = A0 where \: T — k* and &£ € (Tf)v.

From 3.1.36 we see that va = (&Y,...,&)n. Finally, if A0¢ € X(f for some &, then
Supp £ C Supp & and we are done. ]
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Lemma 3.1.43. Let £ = (£%);e1 be a sequence of distinct smooth extremal rays and ©
be a collection of smooth sequences with rays in £. Set

e _ V(zi,) NNV (z,) #0
]—"g—{(ﬁ,M,Z,(;)E}—g Zﬂ‘aée(_)st gi1’_”76‘isgé

Then, taking into account the identification made in 3.1.17, we have
E=U%»
€0

Proof. Let x = (L, M,2,A) € Usce Fs(T), for some scheme T and let p € V(z;,) N
--NV(2,). This means that the pullback of 7¢(x) to k(p) is given by a = b0+ +€"

for some b: T\ — k(p). By definition there exists § € © such that a € Fs(k(p)), i.e.
a = p0°® for some & € (8)n, p: T — k(p) . So

Supp &Y% C {a =0} = Suppd C Suppd = &Y € (§)n

For the other inclusion, since all the Fs are open substacks of Fg, we can reduce the
problem to the case of an algebraically closed field k. So let (z,\) € ]-"g (k) and set

J={i€l]|z =0} By definition of ]-"g there exists § € © such that n = (£7)je; C &
and, taking into account 3.1.17, this means that a € F (k) C Fs(k). O

Definition 3.1.44. Let O be a collection of smooth sequences. We define

5 0
X§ = | SpecZIT}) € SpecZ{Ty] and &9 = | J A7 € 2,
) 6€0

Theorem 3.1.45. Let £ = (£%);e1 be a sequence of distinct smooth extremal rays and ©
be a collection of smooth sequences with rays in £. Then we have an isomorphism
FE =m (X)) = &9

Proof. Taking into account 3.1.43, it is enough to note that

_ — ) ~
me (45) = m (U A9 = U Fers = U 7 = A7
S LIS Jeo

O

Proposition 3.1.46. Let £ = (£%);c1 be a sequence of distinct smooth extremal rays and
© be a collection of smooth sequences with rays in £. Then the set

A@:{<m,...,m)@+ | 30 € © s.t. pyy...,m C O}

is a toric fan in TV ® Q whose associated toric variety over Z is Xq(;). Moreover

Xg ~ [X§/D(Z")]
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3 Galois Covers under diagonalizable group schemes.

Proof. We know that if 7 is a smooth sequence then Spec Z[T_%] is a smooth open subset
of Spec Z[T{™] and it is the affine toric variety associated to the cone (n)g, . It is then

easy to check that A® is a fan whose associated toric variety is Xq(?. Since Spec Z[TJQF] is
the equivariant open subset of Spec Z[Ti”t] inducing X g in Zy, then X © is the equivariant

open subset of Spec Z[Ti”t] inducing X f . In particular we obtain the last isomorphism.

O]

Lemma 3.1.47. Assume Ty integral and set © for the set of all smooth sequences. Then
Xf is the smooth locus of Spec Z[T]. In particular Z3" = Xf o~ [XE/D(ZT)].

Proof. From 3.1.36 we know that Spec Z[Tf] is smooth over Z and it is an open subset
of SpecZ[T4}]. So we focus on the converse. Since SpecZ[TY4] is flat over Z, we can
replace Z by an algebraically closed field k. Let p € Spec k[T] be a smooth point. In
particular p®” is smooth too. If p? = 0 then p € Spec k[T] and we have done. So we
can assume p°" = pg for some 0 # € € T thanks to 3.1.24. We claim that there exist a
smooth sequence £, ..., £9 such that £ € (€1,...,E9)y. This is enough to conclude that
p € Spec k[Tf] . Indeed if z,, € p for some w € Ker £ N Ty then it belongs to p°™ = p¢
and so £(w) > 0, which is not our case.

So assume we have £ € T such that pg is a regular point. Set W = (Ker& NTY )z
and T, = Ty + W. Note that Speck[T" ] is an open subset of Spec k[T] that contains
pe. Moreover k[T |/ps = k[W]. Let vi,...,v4 € Ty be elements such that

T, = (v1,..., 09N+ W and E(vi) >0

with ¢ minimal. We claim that M = pg/p% ~ k[W]9, where pg is thought in k[T ].
Indeed M is a k-vector space over the z,, v € T that satisfies: £(v) > 0 and whenever
we have v = v/ + 0" with v/,v” € T, it follows that £(v) = 0 or £(v") = 0. A simple
computation shows that such a v must be of the form v; + W for some i. But since we
have chosen ¢ minimal we have (v; + W) N (v; + W) = 0 if i # j. This implies that M
is a free k[W]-module with basis x,,...,,,. This shows that ¢ = ht pg.

Now set V' = (v1,...,v4)z. Since V4+W =T, rkV < ¢ and

kW) ~ k[T ]/ps = tkT = dimk[T",] = htpg + dimk[W] = g+ 1k W
we obtain that vi,...,v, are independent. Let &,..., &7 given by £ (vj) = &;; and

EfWh: 0. In particular W = Ker £ and it is generated by elements in 7. Since & =0
we have

E=) EW)E  Ewi)>0

Moreover since Ty C T?, and &' € T" i we get that £ € T'Y, as required. O
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Theorem 3.1.48. If £ is a sequence of distinct indecomposable rays containing the
smooth extremal rays then g induces an equivalence

Viziy)) N---NVi(z,) = 0
(L, M,2,0) € Fg| if E,...E% is not a = ﬂgl(Z;m) — Z5m
smooth sequence B

Proof. Lemma 3.1.47 tells us that Z;m = X9, where © is the collection of all smooth
sequences, while 3.1.40 allows us to replace £ with the sequence of all smooth extremal
rays. Therefore it is enough to apply 3.1.45 and 3.1.46. 0

Proposition 3.1.49. Let a: T — k € Xy(k), where k is a field. Then a lies in zy"
if and only if there exists a smooth ray € € TY and A\: T — k" such that a = \0F.

Proof. Apply 3.1.48 and 3.1.42. O

3.1.4 Extension of objects from codimension 1.

In this subsection we want to explain how it is possible, in certain cases, to check that an
object of Xy over a sufficiently regular scheme X comes (uniquely) from Fg only checking
what happens in codimension 1.

Notation 3.1.50. Given a scheme X we will denote by Pic X the category whose objects
are invertible sheaves and whose arrows are maps between them.

Proposition 3.1.51. Let X i> Y be a map of schemes. If PicY f—> Pic X s fully
faithful (resp. an equivalence) then Xy(Y') EAN Xy(X) has the same property.
Proof. Let (L,a),(L,d") € Xp(Y) and o: f*(L,a) — f*(L',a’) be a map in Xy(X).
Any map o;: f*L; — f*L; comes from a unique map 7;: L; — L;, i.e. o5 = f*7.
Since

F@?9(a() = a?V(f*alt) = f*(d' (1)) = 7(a(t)) = d'(t)
7 is amap (L,a) — (L',ad’) such that f*r = g. We can conclude that f*: X4(Y) —
Xy(X) is fully faithful.

Now assume that PicY EAN Pic X is an equivalence. We have to prove that Xy(Y) EAN
Xy(X) is essentially surjective. So let (M,b) € Xy(X). Since f* is an equivalence we
can assume M; = f*L; for some invertible sheaf £; on Y. Since for any invertible sheaf
£ on Y one has that £(Y) ~ (f*£)(X), any section b(t) € M?®) extends to a unique
section a(t) € L2®). Since

fa(t) @ a(s)) =b(t) @b(s) =b(t+ s) = f(a(t+s)) = a(t) ®a(s) =a(t+s)

for any t,s € Ty and a(0) = 1, it follows that (£,a) € X4(Y) and f*(£,a) = (M,b). O
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Corollary 3.1.52. Let X —f—> Y be a map of schemes and consider a commutative
diagram

X — Je

Pl e

Y — X¢

where £ is a sequence of elements of T . Then if Pic X AR PicY is fully faithful (resp.
an equivalence) the dashed lifting is unique (resp. exists).

Proof. Tt is enough to consider the 2-commutative diagram

Fe(v) L Fe(x)
Wél . lﬂé

Ap(Y) — Xy(X)

and note that f* is fully faithful (resp. an equivalence) in both cases. O]

Theorem 3.1.53. Let X be a locally noetherian and locally factorial scheme, € = (E%)ier
be a sequence of distinct smooth extremal rays and © be a collection of smooth sequences
with rays in €. Consider the full subcategories

codimx V(z;,)N---NV(z,)

>2
cg)(? = {(£3M7275) Ef§(X) Zfig(;G@ s.t. gil gzs Cg }g./rg(X)

and

Vp € X with codim, X <1
9% = {x e xx)| S

_ ©
Xk € Y
Then mg induces an equivalence of categories

TR =7z (IR) = IR
Proof. We claim that

€2 = {x € Fg(X) | 3U C X open subset s.t. codimyx X — U > 2, XU € ]:g(U)}

C Taking into account the definition of ]-"g in 3.1.43, it is enough to consider
U=X— U Vizi) NNV (z,)
F6€O s.t. £i1,..EsC§

DIfpeV(zi,)N---NV(z,) and codim, X <1 then p € U and again by definition of
]-"? there exists § € © such that £,... &% C§.
“We also claim that

2% = {x € X4(X) | U C X open subset s.t. codimy X — U > 2, XU € Xf(U)}
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D Such a U contains all the codimension 1 or 0 points of X.
C Let x € @)Gg and X L5 Xy be the induced map. If £ is a generic point of X, we
know that f(§) € ]Xf] C |24]. In particular f(|X]) C |Z4|. Since both X and Z, are

reduced g factors through a map X AN Z4. Since X, ¢>@ is an open substack of Zg, it
follows that U = g_l(Xf) is an open subscheme of X, x| € Xf(U) and, by definition
of 29, codimy X — U > 2.

Taking into account 3.1.45 it is clear that ¢ = 7z '(29). We will make use of the fact
that if U C X is an open subscheme such that codimyx X — U > 2 then the restriction
yields an equivalence Pic X ~ PicU. The map ‘K)? — 9)? is essentially surjective since,
given an object of 22, the associated map X —2» Ay fits in a 2-commutative diagram

U— FECFe

|

and so lifts to a map X — F¢ thanks to 3.1.52.

It remains to show that ‘5}? — @)Gg is fully faithful. Let x, x' € %)(? and U, U’ be the
open subscheme given in the definition of CK)C? . Set V.= UNU’' Taking into account
3.1.51 and 3.1.45 we have

Hom, (x)(x, X) —— HOTD)@(X)(X» xX')

12 1
HOm}"é(V) (X‘V: Xiv) — Hode)(V) (X|V7 XTV)
12 2
Homzo () (v Xy) — Homye ) (xpvs X|y)

3.2 Galois covers for a diagonalizable group.

In this section we will fix a finite diagonalizable group scheme G over Z and we will call
M = Hom(G, G,,) its character group. So M is a finite abelian group and G = D(M).
With abuse of notation we will write Oy[M] = Oy[Gy]| and Zy = Zp(ar), the main
component of D(M)-Cov. It turns out that in this case D(M)-covers have a nice and
more explicit description.

In the first subsection we will show that D(M)-Cov ~ X, for an explicit map 7' N
7ZM /{eq) and that this isomorphism preserves the main irreducible components of both
stacks. Moreover we will study the connection between D(M)-Cov and the equivariant
Hilbert schemes M-Hilb™ and prove some results about their geometry.

Then we will introduce an upper semicontinuous map |D(M)-Cov| "4 N that yields
a stratification by open substacks of D(M)-Cov. We will also see that {h = 0} coincides
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3 Galois Covers under diagonalizable group schemes.

with the open substack of D(M)-torsors, while {h < 1} lies in the smooth locus of Zj,
and can be described by a particular set of smooth extremal rays. This will allow us to

describe normal D(M)-covers over a locally noetherian and locally factorial scheme X
with (char X, |[M]) = 1.

3.2.1 The stack D(M)-Cov and its main irreducible component 2.
Consider a scheme U and a cover X = Spec ./ on it. An action of D(M) on it consists

of a decomposition
o7 =P n
meM

such that Oy C o4 and the multiplication maps @, ® 4, into ,,. If X/U is
a D(M)-cover there exists an fppf covering {U; — U} such that &y, ~ Oy,[M] as
D(M)-comodules. This means that for any m € M we have

Vi (Zm) v, = Ou, = Sy, invertible

Conversely any M-graded quasi-coherent algebra o/ = @, < @n With < = Oy and
o, invertible for any m yields a D(M)-cover Spec «7.

So the stack D(M)-Cov can be described as follows. An object of D(M)-Cov(U) is
given by a collection of invertible sheaves L,, for m € M with maps

wm,n: Ly & Ly — £m+n

and an isomorphism Oy ~ Ly satisfying the following relations:

Commutativity Associativity
~ 1d®n,¢
Ly @Ly —— L, Q@ Ly £m®£n®[’t"£m®£n+t
m,n .d m,n
wm,n\ /wn,m i | P [
»Cm—i-n £m+n @ Et £m+n+t

~ ~ "pm,O
Neutral £Lm —— Lm®0y — Ln @ Ly ——= Ly

Element \—/

id

If we assume that L£,, = Opuvy,, i.e. that we have sections v, generating L,,, the
maps ¥, can be thought of as elements of Oy and the algebra structure is given by
UmUn = VmnUm4n. In this case we can rewrite the above conditions obtaining

¢m,n == wn,mv wm,O = 17 wmmwm—i—n,t = wn,twn—l—um (321)

The functor that associates to a scheme U the functions ¢: M x M — Oy satisfying
the above conditions is clearly representable by the spectrum of the ring

RM = Z[mm,n]/(xm,n — Tnymy Tm,0 — 17 ITmnTmtnt — mn,twn—l—t,m) (322)
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In this way we obtain a Zariski epimorphism Spec Ry — D(M)-Cov, that we will prove
to be smooth. We now want to prove that the stack D(M)-Cov is isomorphic to a stack
of the form X.

Definition 3.2.1. Define I~(+ as the quotient monoid of NM*M by the equivalence rela-
tion generated by

emmn ~ €nms €m0~ 0, emn Tt emint ~ €nt+ Cnttm
Also define ¢y : I~(+ — ZM /{eq) by O (emmn) = €m + €n — Emn.
Proposition 3.2.2. Ry ~ Z[K,] and there exists an isomorphism
Xy,, ~ D(M)-Cov (3.2.3)

such that Spec Z[K ] ~ Spec Ry — D(M)-Cov ~ Xy, is the map defined in 3.1.4. In
particular
D(M)-Cov = [Spec Ryr/D(ZM /(ep))]

Proof. The required isomorphism sends (L, K, N Sym" L) € Ay,, to the object of
D(M)-Cov given by invertible sheaves (£}, = £,;}) and ¥m.n = ¥(emn). O

We want to prove that the isomorphism 3.2.3 sends Z4,, to Zy (see def. 2.2.4) and
Bg,, to BD(M). We need the following classical result on the structure of a D(M)-torsor
(see | , Exposé VIII, Proposition 4.1 and 4.6|):

Proposition 3.2.3. Let M be a finite abelian group and P — U a D(M)-equivariant
map. Then P is an fppf D(M)-torsor if and only if P € D(M)-Cov(U) and all the
multiplication maps V¥, , are isomorphisms.

Now consider the exact sequence

0— K —ZM/{eg) = M — 0
Em ——Mm

Definition 3.2.4. For m,n € M we define

Umn = QZ)M(em,n) =éemten— Emin € K

and K| as the submonoid of K generated by the vy, ,,. We will set @, , = 2V € Z[K ]
and, for € € KY, Enn = E(Umn).

Lemma 3.2.5. The map

K, K

Em,n | > Um,n
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1s the associated group of f(.,. and Ky 1is its associated integral monoid. In particular we
have a 2-cartesian diagram

Spec Z| K] — Spec Z|K ] — Spec Ry

| | |

BD(M) Zu D(M)-Cov

Proof. Set x = Hmm Zmn. Since an object ¢ € Spec Ry (U) is a torsor if and only if
Y € Of for all m,n, it follows that (Spec Rar), = BD(M) Xp(ar)-cov Spec Ry We
want to define an inverse to (Rpr), — Z[K]. Consider the algebra Sys over Ry induced
by the atlas map Spec Ry; — D(M)-Cov, i.e.

Sy = @ Ryrwy, with wo = 1, wpw, = Ty pWmtn
meM

The algebra (Sir), is a D(M)-torsor over (Rps), and so w,, € (Sp)i for all m. In
particular we can define a group homomorphism

ZM [{eo) — (Sm);

Em b W

which restricts to a map K — (Ras), that sends vy, to zp, n. In particular the map
f(+ — K defined in the statement gives the associated group of f(+ and has as image
exactly K, which means that K is the integral monoid associated to K .

In order to conclude the proof it is enough to apply 3.1.9 and 3.1.10. ]

Corollary 3.2.6. The isomorphism Xy, ~ D(M)-Cov (3.2.3) induces isomorphisms
By, ~ BD(M) and Z4,, ~ Zy. In particular Zy is an irreducible component of
D(M)-Cov and

BD(M) = [Spec ZIK]/D(ZM /(e0))] and Zar = [Spec ZIK ] /DEZM /(eo))

Note that the induced map ¢pr: K — ZM/{eq) is just the inclusion and so it is
injective. This means that any result obtained in section 3.1 applies naturally in the
context of D(M)-covers. In particular now we show how we can describe the objects of
Fe, for a sequence of rays in KY, in a simpler way.

Proposition 3.2.7. Let M ~ [ | Z/l;Z be a decomposition and let m1, ..., m, be the
associated generators. Given & =E',... " € KY define .Péed as the stack whose objects
over a scheme X are sequences L = L1,...,Lp, M = My, ... My, 2 = 21,..., 2, ji =
M1y - -y fin where £, M are invertible sheaves over X, z; € M; and p are isomorphisms

El(liemi) ""(liemi)
1

i Ci_li =5 MEliem) — M X Mf
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Then we have an isomorphism of stacks

e Fred
(La M7 Z, )\) = ((ﬁmi)izl,...,nan Z, (A(lzeml))z*l n)

L

Proof. We want to find o, V, vi,...,v, as in 3.1.26 such that f;ed’a = Féed and that
the map in the statement coincides with the one defined in 3.1.28. Set 6*: M —
{0,...,1; — 1} as the map such that m;(m) = m;(6%,m;), where m;: M — Z/I;Z is the
projection, and think of it also as a map §°: ZM /{eg) — Z. Set V. = @, Zem,,
v; = e, and o: ZM [{eg) — V as o(em) = >y 88, vi. Clearly (id — 0)ZM /{eo) € K
and (id — o)V =0. So W = 0 K. We have

n n
(V) = Z‘an,nvi € @lini
i=1 i=1

since 6}, ,, € {0,1;} for all 7. On the other hand o' (v(;,—1ym,m;) = livi. Therefore we have
W = ;. liZv;. It is now easy to check that all the definitions agree. O

We now want to express the relation between D(M)-Cov and the equivariant Hilbert
scheme, that can be defined as follows. Given m = my,...,m, € M, so that D(M) acts
on A}, = SpecZ[x1,...,x,| with graduation degz; = m;, we define M-Hilb™: Sch°? —
(Sets) as the functor that associates to a scheme Y the set of pairs (X N Y, j) where
X € D(M)-Cov(Y) and j: X — A}, is an equivariant closed immersion over Y. Such a
pair can be also thought of as a coherent sheaf of algebras & € D(M)-Cov(Y') together
with a graded surjective map Oy|[x1,...,2,] — &/. This functor is proved to be a
scheme of finite type in | |.

Proposition 3.2.8. Let m = mq,...,m, € M. The forgetful map ¥,,: M-Hilb™ —
D(M)-Cov is a smooth Zariski epimorphism onto the open substack D(M)-Cov™ of
D(M)-Cov of sheaves of algebras < such that, for all y € Y, & ® k(y) is generated
in the degrees my,...,m, as a k(y)-algebra. Moreover M-Hilb™ is an open subscheme
of a vector bundle over D(M)-Cov™.

Proof. Let & = ® ey Ay € D(M)-Cov and consider the map
Ner: Sym( iy, & - B Ay, ) — A

induced by the direct sum of the inclusions @7%,, — 7. It is easy to check that 7. is
surjective if and only if &/ € D(M)-Cov™. Therefore D(M)-Cov™ is an open substack
of D(M)-Cov and clearly contains the image of ,,,. Consider now the cartesian diagram

F —— M-Hilb™

|, b

T L D(M)-Cov™
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and let U -5 T be a map. The objects of F(U) are pairs composed by a graded
surjection Oy|xy,...,z,] — % and an isomorphism % ~ ¢*<7. This is equivalent to
giving a graded surjection Oy|[z1,...,2,] — ¢*<7. In this way we obtain a map

F 97 HHomT(O% ;) > Spec Sym(@ %T;il)

We claim that this is an open immersion. Indeed given (a;);: U — [[, Homp(Or, %y, ),
the fiber product with F' is the locus where the induced graded map Oylzy, ..., 2, —
& ® Oy is surjective, that is an open subscheme of U. In particular F' is smooth over T'
and so ¥y, is smooth too. It is easy to check that it is also a Zariski epimorphism. Finally
the vector bundle N of the statement is defined over any U — D(M)-Cov™ given by
A = D,, % by Ny = @iszfnjil. O

Remark 3.2.9. If the sequence m contains all elements of M — {0}, then D(M)-Cov™® =
D(M)-Cov. Therefore in this case M-Hilb™ is an atlas for D(M)-Cov.

Remark 3.2.10. Let X be a scheme, X be an irreducible (resp. connected) algebraic
stack and X — X be a fppf epimorphism such that the fiber over the generic point of
X is irreducible (resp. such that 7 is geometrically connected). Then X is irreducible
(resp. connected). For the connectedness, if X = U UV, since 7 is open and |X| =
|7(U)| U |w(V)], we have 7(U) N (V) # 0. In particular U and V meet a common fiber
Z of . Since Z is connected we can conclude that ZNU NV # (). For the irreducibility,
consider a generic point ¢: Speck — X, with k algebraically closed, and denote by Z
the (topological) image of Speck xy X — X. Note that Z does not depend on the
choice of the generic point and it is irreducible by hypothesis. If V' C X is a non-empty
open subset of X, since 7 is an open map, we can conclude that V N Z # (). Therefore
Z is dense in X and X is irreducible.

Remark 3.2.11. The map 0, : M-Hilb™ — D(M)-Cov™ of 3.2.8 is a smooth epimor-
phism with geometrically connected and irreducible fibers. In particular, taking into
account 3.2.10, if X' is an algebraic stack, X — D(M)-Cov™ is a map and we de-
note by 9,,}(X) the base change of ¥, we have that: X is connected (resp. geomet-
rically connected, irreducible, geometrically irreducible, smooth, reduced) if and only
if ¥,;,}(X) has the same property. The same conclusions hold if we consider the atlas
Spec Ryr — D(M)-Cov instead of 9,,.

In particular, since BD(M) C D(M)-Cov™, we can conclude that 9,,!(Z)) is the
main irreducible component of M-Hilb™. B

We want now study some geometrical properties of the stack D(M)-Cov and, therefore,
of the equivariant Hilbert schemes.

Remark 3.2.12. The ring Rjs can be written as quotient of the ring Z[wm7n](m7n)€J, where
Jis {(m,n) € M? | m,n,m+n # 0} divided by the equivalence relation (m,n) ~ (n,m),
by the ideal

7 TmaTmint = TntTntem with m,n,t, m+n,n+t,m+n-+t+#0and m #t,
- T mtT—mttm — Tem,sT—m+sm With m,s,t # 0 and distinct
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Indeed the first relations are trivial when one of m, n, t is zero or m = t, while if m+n =0
yield relations @, —m = T—m tT—m+t,m. Using these last relations we can remove all the
variables z, , with 0 € {m,n, m + n}.

Remark 3.2.13. There exists a map f: K, — N such that for any m,n # 0 we have
flemn) = 1if m+n # 0, flem,—m) = 2 otherwise. In particular f(v) = 0 only
if v = 0. Moreover f induces an N-graduation on both (Ry; ® A) and Z[K] ® A,
where A is a ring, such that the degree zero part is A and that the elements z,, , with
m + n # 0 are homogeneous of degree 1. The map f is obtained as the composition

K, — K CZM/(eg) SN Z, where h(em) =1 if m # 0.
One of the open problems in the theory of equivariant Hilbert schemes is whether those

schemes are connected. As said above M-Hilb™ is connected if and only if D(M)-Cov™
is so. What we can say here is:

Theorem 3.2.14. The stack D(M)-Cov is connected with geometrically connected fibers.
If any non zero element of M belongs to the sequence m, then M-Hilb™ has the same
properties.

Proof. It is enough to prove that Spec Rj; ® k is connected for any field k. But Ry ® k
has an N-graduation such that (Ry; ® k)o = k by 3.2.13 and it is a general fact that such
an algebra does not contain non trivial idempotents. O

We now want to discuss the problem of the reducibility of D(M)-Cov.

Definition 3.2.15. Let S be a scheme. An algebraic stack X is called wuniversally
reducible over S if, for any base change S’ — S, the stack X xg S’ is reducible. An
algebraic stack is universally reducible if it is so over Z.

Remark 3.2.16. It is easy to check that X is universally reducible over S if and only if
all the fibers are reducible.

Lemma 3.2.17. If there exist m,n,t,a € M such that
1) m,n,t are distinct and not zero;
2) a#0,m,nt,m—nn—mn—tt—mm—t2m—=t2n—t,m+n—t,m+n—2t;
3) 2a #m+n—t;

then Spec Ry is universally reducible.

Proof. Let k be a field and I = (2% — 2%) be an ideal of k[z1,...,z,] = k[z]. We will
say that a € N" is transformable (with respect to I) if there exists ¢ such that ; < «
or 3; < a. Here by ao < 8 € N” we mean a; < 3; for all j. A direct computation shows
that if z* — 2% € I and « # 3, then both o and j are transformable.

We will use the above notation for the ideal I defining Ry ® k as in 3.2.12. In
particular the elements «a;, 5; € N/ associated to the ideal I are of the form Cuw + Cutow
with u,v,u +v,w,u+ v+ w # 0.
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Set =[], Tmmn- Since Ry @k — k[K1] C k[K] = (Ry ® k), there exists N > 0
such that P = Ker(Ry ® k — k[K4]) = Annp?. Our strategy will be to find an
element of P which is not nilpotent. Since P is a minimal prime, being Spec k[K ;] an
irreducible component of Spec Rys ® k, it follows that Rjs ® k is reducible. Now consider
a = €gm—atm+n—t—at+a—m T E€t+a—nn—a; B = em+n—t—a,t+a—n T €an—at€m—at+a—m €
N’ and z = 2® — 2P. We will show that pz = 0, i.e. z € P and that z is not nilpotent.
First of all note that z is well defined since for any e, , in o or 3 we have u,v # 0 and
0 # u+v e {m,n,t} thanks to 1), 2). Let Sys be the universal algebra over Ry, i.e.
Sy = Dne s Rarvm with vpvn = T nUmin and v = 1. By construction we have

(Uavmfa)('Uernftfathrafm)(UtJrafnUnfa) = lavmvnvt =

B

(vm+n—t—avt+a—n)(Uavn—a)(vm—a,t—l—a—m) = T UmUnU¢

S0 LT nTrmtn,tVm4ntt = gﬁxm,na:m+n,tvm+n+t and therefore zp =0, i.e. z € P.

Now we want to prove that any linear combination v = aa + b € N’ with a,b € N
is not transformable. First remember that each e, , in 7 is such that u +v € {m,n,t}.
If we have e,y + €ytv,w < 7y then there must exist e; ; < 7 such that i € {m,n,t} or
j € {m,n,t}. Condition 2) is exactly what we need to avoid this situation and can be
written as {a,m —a,m+n—t—a,t+a—m,t+a—n,n—a}nN{m,n,t} =0

In particular, if we think of K as a quotient of N/ we have aa+b8 = a’a+b5 in K
if and only if they are equal in N”. Assume for a moment that a # 3 in N7. Clearly this
means that o and /3 are Z-independent in Z”. Since any linear combination of o and 3 is
not transformable, it follows that z®, z? are algebraically independent over k in Ry @ k
and, in particular, that z = ® — 2 cannot be nilpotent. So it remains to prove that
a # B in N7, Note that for any i € {m,n,t} there exists only one €y i a such that
u + v = 1 and the same happens for 5. So, if & = 8 and since m,n, ¢ are distinct, those
terms have to be equal, for instance eqm—q = €min—t—at+a—n- But a #m+n—1t—a
by 3), while a # t + a — n since t # n. Therefore a # 3. O

Corollary 3.2.18. If |M| > 7 and M % (Z/27)3 then D(M)-Cov is universally reducible
and the same holds for M-Hilb™, provided that m contains all elements of M — {0}.

Proof. We have to show that Ry is universally reducible and so we will apply 3.2.17. If
M = C x T, where C is cyclic with |C] > 4 and T' # 0 we can choose: m a generator
of C,n=3m,t=2mand a € T — {0}. If M cannot be written as above, there are
four remaining cases. 1) M ~ Z/8Z: choose m =2, n =4, t =6, a = 1. 2) M cyclic
with |M| > 8 and |M| # 10: choose m =1, n =2, t =3, a =5. 3) M ~ (Z/2Z)" with
[ > 4: choose m = e, n =e3, t =e€3, a =e4. 4) M ~ (Z/3Z)l with [ > 2: choose
m=e;, n=2e1, t=ey, a=m+t=e]+es. O

Proposition 3.2.19. D(M)-Cov is smooth if and only if Za is so. This happens if and
only if M ~7,/27,7./37,7/27 X Z./]2Z and in these cases D(M)-Cov = Zy;. To be more
precise Ry = Z[Tmn](mmn)es, where J is the set defined in 3.2.12.
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In particular M-Hilb™ is smooth and irreducible for any sequence m if M is as above.
Otherwise, if any non zero element of M belongs to the sequence m, M-Hilb™ is not
smooth.

Proof. Let k be a field. Note that
D(M)-Cov smooth <= Rjy; smooth = Z); smooth = k[K]/k smooth

We first prove that if k[K ] is smooth then M has to be one of the groups of the
statement. We have K, ~ N" @ Z° and therefore k[K;]| is UFD. We will consider
k[K;] endowed with the N-graduation defined in 3.2.13. Since any of the z,, has
degree 1, it is irreducible and so prime. If we have a relation Z,, nTmint = TntTntt,m
with m,n,t,m + n,n+t,m+n+t # 0 and m # t, then Zp, | TpTpit,m implies
that @, = Tpt OF Typ = Tp4t,m, Which is impossible thanks to our assumptions.
We will prove that if M is not isomorphic to one of the group in the statement, then
such a relation exists. Clearly it is enough to find this relation in a subgroup of M.
So it is enough to consider the following cases. 1) M cyclic with |M| > 5: choose
m=n=1,t=2.2) M ~Z/AZ: choose m =1, n =2, t =3. 3) M ~ (Z/2Z)3: choose
m=ey, n=ey, t=-e3. 4) M ~ (Z/37)% choose m =n =ej, t = es.

We now want to prove that when M is as in the statement, then the ideal I of 3.2.12 is
zero. If we have a relation as in the first row, since m # ¢ we have |[M| > 3. If M ~7Z/3Z
then t = 2m and m +t = 0. If M ~ (Z/2Z)?, if m,n,t are distinct then m +n +t = 0,
otherwise m =n and m +n = 0. If we have a relation as in the second row, since m,t, s
are distinct, we must have M =~ (Z/2Z)%. Therefore m +t = s and the relation become
trivial. O

Corollary 3.2.20. The stack D(Z/27Z x 7./2Z)-Cov is isomorphic to the stack of se-
quences (L, 1;)i=1,23, where L1, Lo, L3 are invertible sheaves and 1: Lo ® L3 — Ly,
Po: L1® L3 — Lo, YP3: L1 ® Lo —> L3 are maps.

Proof. Set M = (Z/27)?. Thanks to 3.2.19, we know that K, = K, ~ Nu. ., ®
Nve, e14e2 @ NUey ¢ 4¢,- S0 an object of D(M)-Cov is given by invertible sheaves £; =
Eeu ‘CQ = [’62’ £3 = [’61+€2 and maps 7111 = w€2,€1+627 1112 = Q1}61,61+62> 1/}3 = 71)61,62- O

Remark 3.2.21. D(Z/AZ)-Cov and Z/4Z-Hilb™, for any sequence m, are integral and nor-
mal since one can check directly that Ry 7 = Zlx12,%33,%23,%1,1)/(T1,2233 — T2.3%1,1).
I am not able to prove that D(M)-Cov is irreducible when M is one of Z/5Z, Z/6Z,
ZJ7Z, (Z/27)3. Anyway the first two cases seem to be integral thanks to a computer
program, while for the last ones there are some techniques that can be used to study this
problem but they are too complicated to be explained here.

3.2.2 The invariant h: |D(M)-Cov| — N.

In this subsection we investigate the local structure of a D(M)-cover, especially over a
local ring. In particular we will define an upper semicontinuous map h: |D(M)-Cov| —
N that measures how much a cover fails to be a torsor: the open locus BD(M) C
D(M)-Cov will be exactly the locus {h = 0}.
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3 Galois Covers under diagonalizable group schemes.

Notation 3.2.22. Given a ring A, we will write B € Spec Rjs(A) meaning that B is an
M-graded A-algebra with a given M-graded basis, usually denoted by {vy, }men with
vg = 1, and a given multiplication 1 such that

B = @ AUy, VU = wm,nvm—i-n
meM

We will also denote by A* the group of invertible elements of A. If f: X — Y is an
affine map of schemes and ¢ € Y, we will use the notation Ox, = f.Ox ®o, Oy,.
In particular X xy Spec Oy, >~ Spec Ox 4. Notice that, although Ox , is written as a
localization in a point, this ring is not local in general.

Lemma 3.2.23. Let A be a ring and B € Spec Ry (A), with graded basis vy, and multi-
plication map . Then the set

Hy=Hgjy={meM|v, € B} ={me M|y _mec A"}

is a subgroup of M. Moreover if m,n € M and h € Hy, then ¥y, and Yy nin differs
by an element of A*. If H is a subgroup of Hy then C = @, . Avy, is an element of
BD(H)(A). Moreover if o: M/H — M gives representatives of M /H in M and we set

W, = Vg () for m € M/H we have

B = @ Cwy, € SpeCRM/H(C)
meM/H

Finally if we denote by ' the induced multiplication on B over C' we have Hy = Hy,/H
and for any m,n € M ., . and P, ,, differ by an element of C*.

m,n

. M|-1 M
Proof. From the relations vy, v—_m = Ym —m, vln =1 _ AV, v‘m = A, —m, Where

A € B and v,V = Yy nUm4n We see that v, € B* <= 9, _, € A* and that Hy, < M.

From 3.2.1 we get the relations ¥_y 1 = Vn uVhtu,—n a0 Yy nVrn n = Yn nVmnth- SO
if h € H then 9y, € A* for any v and ¥y, , and ¥y, 14 differ by an element of A*.

Now consider the second part of the statement. From 3.2.3 we know that C' is a torsor
over A. Since for any m we have vy, = (Vnm/Vn)Vo@m), Where h = o(m) —m € H we
obtain the expression of B as M /H graded C-algebra and that

1#;”7” = ¢J(m),a(n) (wh,a(m)—ko(n)/vh) where h = U(m + n) - O'(’I?’L) - O'(?’L)
From the above equation it is easy to conclude the proof. ]

Definition 3.2.24. Given aring A and B € Spec Rjs(A) we continue to use the notation
Hp,4 introduced in 3.2.23 and we will call the algebra C' obtained for H = Hp, the
mazimal torsor of the extension B/A. If kis a field and £ € K we will write Hg = Hp/,
where B is the algebra induced by the multiplication 0°. In particular

He={me M| En m =0}

Finally if f: X — Y € D(M)-Cov(Y) and g € Y we define H(q) = Ho, ,/oy.,-
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Proposition 3.2.25. We have a map

|D(M)-Cov| LN {subgroups of M}
Blki - Hgp

such that, if Y —— D(M)-Cov is given by X N Y, then Hy = H o |ul.

Proof. 1t is enough to note that if A is a local ring, B € D(M)-Cov(A) is given by
multiplications ¢ and 7: A — A/m4 — k is a morphism, where k is a field, then
Ym,—m € A = T(V¥m,—m) # 0. O

Remark 3.2.26. Let (A, ma) be a local ring and B € Spec Ry (A) with M-graded basis
{vm}menm. Then Hg g = Hpja(ma). If Hga = 0 then any vy, with m # 0, is nilpotent
in B ® k and therefore B is local with maximal ideal

mp =ma ® @ Avy,
meM—{0}

and residue field B/mp = A/my. In particular mp/m% is M-graded.

Lemma 3.2.27. Let A be a local ring and B = @, .y Avm € D(M)-Cov(A) such that

Hp/a =0. If my,...,my € M then B is generated in degrees my, ..., m, as an A-algebra
if and only if mp = (MA, Vmyy- -, Um, )B-

Proof. We can write mp = ma @ €D, -0y Avm- Denote v = vpy, ..., vy, and m(a) =
> aym; for a € N”. The “only if” follows since given I € M — {0} there exists a relation
of the form v; = pw® with © € A* and a # 0 and so v; € (ma, Uy, .- .,Um, ). For the
converse note that, given [ € M — {0}, vy € mp = (MmA,Um,,...,Um,) means that we
have a relation v; = Avpvy,, for some i, A\ € A* and I’ = | — m;. Moreover v; ¢ A[v]

implies that vy ¢ A[v] and I # 0. If, by contradiction, we have such an element [ we can
write v; = fivp, - - v, With n; € M — {0} and s > |M|?. In particular there must exist
i such that m = n; appears at least |M| times in this product. So m4 > g | v; and
v; € ma B, which is not the case. O

Assume we have a cover X 15 Y € D(M)-Cov(Y). We want to define, for any m € M
amap hym = hx/y,: Y — {0,1}. Let ¢ € Y and denote by C' the 'maximal torsor’
of Ox,4/Oy,q (see 3.2.24). Also let p € f~!(q) and set pc = p N C. Taking into account
3.2.26, we know that B = (Oxq)p = (Ox,q)p. and that B € D(M/H(q))-Cov(Cy,.)
with Hp/c,, = 0. Moreover B is local, B/mp = Cp/pc and mp/m% is (M/H(q))-
graded. If we denote by m the image of m € M in M/Hs(q) and by (mp/m%), the
graded pieces of mp/m%, where t € M/H(q), we can define:

Definition 3.2.28. With notation above we set

hio(q) = 0 if m e Hys(q)
fm\4 dime, , /p. (mp /m%)m  otherwise
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We also set

hy(a) = dime, jue(mp/my) = dime, e (mp/mb)o = (Y hym(@)/Hs(a)]
meM

If&€e KX we set hg m = hym, he = hy € N where f is the cover Spec A — Spec k and
A is the algebra given by multiplication 0° over some field .

The following lemma shows that the value of hy,(g) does not depend on the choice
of the point p € X over g € Y.

Lemma 3.2.29. Let (A,ma) be a local ring, B € D(M)-Cov(A) given by the multiplica-
tion ¢ andt € M. Set also hg/ay = hgar(ma), for some choice of a prime of B over
ma. Then hg/ay =1 tf and only if the following conditions are satisfied:

® tgHB/A;
o for allu,n € M — Hp/y such that u+n =t mod Hg;y we have Py, ¢ A*.

Proof. Let C' be the maximal torsor of the extension B/A and p be a maximal prime of
B. We use notation from 3.2.23. For any | € M — Hp/4 we have a surjective map

k(p) = (mg,/pCp); — (mp,/mB )

and so dimy ) (mg, /szp)Z € {0,1}, where [ is the image of [ under the projection
M — M/H,p. If we prove the last part of the statement clearly we will also have
that hp/ s, is well defined. If t € Hp 4 then hp s, = 0, while if there exist u,n as in
the statement such that ¢, € A%, then wy € Cywgwy C mQBp and again hp/q; = 0.
On the other hand if hg/4¢ =0 and t ¢ Hp/4 then w; € szp and therefore we have an
expression
wy = bx + Z ba rwgwy With b, by 7 € By, € mg,
@,nA0

The second sum splits as a sum of products of the form ¢s z wswgwy with s+u+n =1
and cszn € Cp. Since C), is local, one of these monomials generates C,wy. In this case,
if s+u=0thenue€ Hp,c, =0 which is not the case. So we have an expression

wy = Mwgwy = Mg zw; = Y5 € Cp

where U, 72 # 0 and @+ 7 = t. Since g - and vy, ,, differs by an element of C* thanks to
3.2.23, it follows that 1y, € A™. O

Proposition 3.2.30. We have maps

ID(M)-Cov| —™ . 10,1} ID(M)-Cov| — " N
B/k+— hB/km Blk+—————— hpu

such that, if Y — D(M)-Cov is given by X N Y, then hymm = hpmolu| and hy = holul.
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Proof. Taking into account 3.2.29 and 3.2.25, it is enough to note that if A is a local
ring, B € D(M)-Cov(A) is given by multiplications ¢ and 7: A — A/my — k
is a morphism, where k is a field, then ¢y, € A* <= 7(Yu,) # 0 and Hp )y =
HB®Ak/k:' O]
Corollary 3.2.31. Under the hypothesis of 3.2.27, {m € M | hgjam = 1} is the

minimum among the subsets Q of M such that B is generated as an A-algebra in the
degrees Q. In particular B is generated in hp 4 degrees.

Proposition 3.2.32. Let (A, m4) be a local ring, B € D(M)-Cov(A) and C the mazimal
torsor of B/A. Then

hB/A(mA) = dimk(p) QB/C’ XpB k‘(p)
for any mazximal prime p of B. In particular if (|[Hp 4|, char A/ma) = 1 we also have
hpa(ma) = dimy,) Qp/a @p k(p) for any mazimal prime p of B.

Proof. If A is any ring and B € D(M)-Cov(A) is given by basis {vy, }men and multipli-
cation 9 one sees from the universal property that
QB/A = BM/<607 Un€m + Um€n — ¢m,nem+n>

Now consider B € D(M/H)-Cov(C'), where H = Hp/4 and let p be a maximal prime of
B. Following the notation of 3.2.23, we have that w,, € p for any m € M/H — {0} and
Vi €P = Ymn € ma. So Qp/c @p k(p) is free on the ey, for m € M/H — {0} such
that for any u,n € M/H —{0}, u+n = m implies 1, ¢ A", that are exactly hp/4(ma)
thanks to 3.2.29. O

Corollary 3.2.33. The function h is upper semicontinuous.

Proof. Let X Ly Ybea D(M)-cover and g € Y. Set r = hy(q) and H = H(q). We can
assume that Y = Spec A, X = Spec B with graded basis {v;, }men and multiplication
and that ¢, —n, € A* for any m € H. Set C = A[vm|men. The ring Cy is the maximal
torsor of B,/A, and so, if p € X is a point over g, we have r = dimy,) Qp/c @5 k(p).
Finally let U C X be an open neighborhood of p such that dimy,) Qp/c @5 k(p) <r
for any p’ € U and V = f(U). We want to prove that h < r on V. Indeed given
¢ = f(p) € V, if D is the maximal torsor of B, /Ay, we have Cy C D C By. So

hy(q') = dimygn Qp /o @8, k(p') < dimgy) Qp, /0, @8, k@) <7
O

Remark 3.2.34. The 0 section Ry; —+ Z, i.e. the map that sends any z,, , with m,n # 0
to zero, induces a closed immersion

PicMI=1 ~ BT = [Spec Z/T] C [Spec Ras/T] ~ D(M)-Cov

where T = D(ZM /{eq)).
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Proposition 3.2.35. The following results hold:
1) {h =0} = [BD(M)];
2) {h =M} =0
3) {h = |M| = 1} = |BD(ZM /(eo))] (sce 3.2.5)

Proof. 1If X Ly yisa D(M)-torsor, clearly hy = 0. So 1) and 2) follow from 3.2.31.
Finally, if B € D(M)-Cov(k) with multiplication ¢, hg;, = |M| — 1 if and only if
Hp/, = 0 and hp/g,, = 1 for all m € M — {0}. This means that ¢, ,, = 0 for any
m,n # 0 by 3.2.29. O

In particular, setting U; = {h < i}, we obtain a stratification BD(M) = Uy C U; C
-+ CUjpj—1 = D(M)-Cov of D(M)-Cov by open substacks.

3.2.3 The locus h < 1.

In this subsection we want to describe D(M )-covers with A < 1. This means that 'up to
torsors’ we have a graded M-algebra generated over the base ring in one degree. We will
see that {h < 1} is a smooth open substack of Zj; determined by a special class of explicit
smooth extremal rays of K. This will allow us to give a description of normal D(M)-
covers over locally noetherian and locally factorial scheme X with (char X, |M|) = 1.
Such a description, when X is a smooth algebraic variety over an algebraic closed field
k was already given in | , Theorem 2.1, Corollary 3.1].

Notation 3.2.36. Given € € KY we will write Empn = (V). Since K @ Q ~ QM /(eg)
we will also write &, = E(en) € Q, so that &y, p = Em + En — Eman. When we will have
to consider different abelian groups, we will write K s, Kjs instead of, respectively,
K, K, in order to avoid confusion. Given a group homomorphism n: M — N we will
denote by 7.: Kpy — Ky the homomorphism such that 7. (vm.n) = vym) ) for all
m,n € M, where Ky is the group associated to K,

Remark 3.2.37. Let A be a ring and consider a sequence £ = &£Y,....&" € KY. An
element of Fg(A) coming from the atlas (see 3.1.14) is given by a pair (z, A\) where

z=21,...,2 € Aand \: K — A*. The image of this object under 7¢ is the algebra

C e 1 Emm Emn
whose multiplication is given by ¥, , = )\m}nzl AR AL

n(m

Lemma 3.2.38. Let n: M — N be a surjective morphism and £ be a sequence in
(K4 n)Y. Then £ is a smooth sequence for N if and only if £ o 1. is a smooth sequence
for M.

Proof. We want to apply 3.1.39. Therefore we have to prove that n.(Kiny) = Kin,
which is clear, and that Kern, = (Kern. N K, y). Consider the map f: ZM/{eq) —
ZN /{eo) given by f(em) = enm) and set H = Kern. Clearly fig,, = .. It is easy to
check that G = (v, for m € H)z C Kern* C Ker f and that Ker f/Kern, ~ H. So
in order to conclude, it is enough to note that the map H — Ker f/G sending h to ey,
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is a surjective group homomorphism since we have relations ey + e — ep4pr = vy 1 and
— /
€m+h — €m = €, — Uy p, for m € M and h,h' € H. O

Proposition 3.2.39. Let n: M — Z/IZ be a surjective homomorphism with | > 1.

Then (m) )
0 ifn(m)+nn) <l

n =
E7(Vm.n) { 1 otherwise

defines a smooth extremal ray for K.

Proof. " € KY because, if o: Z/I1Z — N is the obvious section, £" is the restriction
of the map ZM /(ey) — 7Z sending e, to o(n(m)). In order to conclude the proof, we
will apply 3.2.38 and 3.1.38. Set N = Z/IZ. One clearly has £7 = £ o7, and so we can

assume M = Z/IZ and n = id. In this case one can check that vy 1,v12,...,v1,-1 is a
Z-base of K such that £7(vy ;) =01if j <l -1, ENv1-1) = 1. O
Those particular rays have been already defined in | , Equation 2.2].

Notation 3.2.40. If ¢: K, — ZM /(eg) is the usual map we set ZA% = Xf (see definition
3.1.18) for any sequence £ of elements of KY. Remember that if £ is a smooth sequence
then ZJ%[ is a smooth open subset of Zj; (see 3.1.41) and its points have the description
given in 3.1.42.

Set @, for the union over all d > 1 of the sets of surjective maps M — Z/dZ.

Theorem 3.2.41. Let £ = (E")yea,,. We have

{n<1p=U 2

ned s

In particular {h <1} C Z3"" and 7g induces an equivalence of categories

{(L,M,2,0) € Fe | V(zg) N V(zy) =0 if n# p} = mg ' ({h < 1}) = {h < 1}

Proof. The last part of the statement follows from the first one just applying 3.1.45 with
© = {(£")}yed,,- Let k be an algebraically closed field and B € D(M)-Cov(k) with
graded basis {vp, }men and multiplication .

D. Assume B € Z§/ (k). If B is a torsor we will have hp /k = 0. Otherwise we can write
i = £0F" for some &: K — k*. Replacing Spec k by a geometrical point of the maximal
torsor of B/k, we can assume that M = Z/dZ and n = id. In particular Hp/;, = 0 and,
from the definition of £, we get B ~ k[z]/(z?). So hp, = dimy mp/m% = 1.

C. Assume hp/, = 1. Set C for the maximal torsor of B/k (see 3.2.24), H = Hp/;,
and | = |[M/H|. The equality hp,, = 1 means that there exists a unique 7 € M/H
(where r € M) such that hp, = 1 and so Cglv,] = By ~ Cy[x]/(a) for all (maximal)
primes g of C. In particular B = C|v,] ~ C[xz]/(«') and 7 generates M/H. Let n: M —
M/H ~ 7Z/IZ be the projection. We want to prove that B € Zﬂ. Replacing & by a
geometrical point of some fppf extension of k, we can assume C' = k[H|, i.e. vpvp = Upyp
if h,h' € H. Finally the elements v’ for h € H and 0 < i < [ define an M-graded basis
of B/k whose associated multiplication is 0¢". O
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Theorem 3.2.42. Let £ = (£")yep,, and let X be a locally noetherian and locally
factorial scheme. Consider the full subcategories

Cx = {(L, M, 2,\) € Fe(X) | codimy V(z)) NV (2,) > 2 if n # p} € Fe(X)
and
7% = {v L5 X € D(M)-Cov(X) | hy(p) < 1¥p € X with codim, X < 1} C D(M)-Cov(X)
Then mg induces an equivalence of categories

Dy =g (€x) — Cx

Proof. Apply 3.1.53 with © = {(E")},ca,,- o

Theorem 3.2.43. Let £ = (£")ycp,, and let X be a locally noetherian and locally
factorial scheme without isolated points and (char X, |M|) = 1, i.e. 1/|M| € Ox(X).
Consider the full subcategories

Regl = {Y/X € D(M)-Cov(X) | Y regular in codimension 1} C D(M)-Cov(X)

and

C Fe(X)

=1 VE #£0 € & codimx V(zg) NV (zs) > 2
Regx = {(E’M’ 24) € FelX) VE € Evp e XM yy(z) < 1

Then we have an equivalence of categories

—1 -~
Regyx = ﬂg_l(Reg}() — Reg}(

Proof. We will make use of 3.2.42. If Y o x € Regk, p € Y and ¢ = f(p)

then hy(q) < dimy,) mp/mg = 1. So Regyk C 2%. So we have only to check that

—1

Regy = ﬂgl(Reg_%{) C %}c Since X is a disjoint union of positive dimensional, integral
connected components, we can assume that X = Spec R, where R is a discrete valuation
ring. Let x € Cg}(, A/R € .@)1( the associated covers, H = H, /g and C be the maximal

torsor of A/R. We have to prove that y € ]%; if and only if A is regular in codimension
1. Since Dg(H) is etale over R so is also SpecC. It is so easy to check that, replacing
R by a localization of C' and M with M/H, we can assume that H = 0. Since x € €5,
the multiplication of A over R is of the form ¢ = uz’"gd), where p: K — R* is an
M-torsor, z is a parameter of A, ¢: M — Z/IZ is an isomorphism and r = vr(zgs).
Moreover vgr(zgy) = 0 if v # ¢. Replacing M by 7Z/I7Z through ¢ we can assume
¢ = id. Finally, since p induces an (fppf) torsor which is etale over R, replacing R
by an etale neighborhood, we can assume p = 1. After these reductions we have A =
R[X]/(X™| — 27} which is regular in codimension 1 if and only if r = 1. O
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Remark 3.2.44. In the theorem above one can replace the condition 'regular in codimen-
sion 1’ in the definition of Reg}( with 'normal’ thanks to Serre’s conditions, since all
the fibers involved are Gorenstein. Moreover note that a locally noetherian and locally
factorial scheme X is a disjoint union of integral connected components. Therefore an
isolated point is just a connected component which is Speck, for a field k. We want
to avoid this situation because regularity in codimension 1 for a cover over a field is an
empty condition.

Remark 3.2.45. Theorem 3.2.43 is a rewriting of Theorem 2.1 and Corollary 3.1 of | |
extended to locally noetherian and locally factorial schemes without isolated points,
where an object of Fg(X) is called a building data.

3.3 The locus h < 2.

In this section we want to give a characterization of the open substack {h < 2} C
D(M)-Cov as done in 3.2.42 for {h < 1}. The general problem we want to solve can be
stated as follows.

Problem 3.3.1. Find a sequence of smooth extremal rays £ for M and a collection ©
of smooth sequences with rays in £ such that (see 3.2.40)

{h<2y=J 2%

5€O

or, equivalently, such that, for any algebraically closed field k, the algebras A € D(M)-Cov(k)
with h 4/, < 2 are exactly the algebras associated to a multiplication of the form ¢ = w0
where w: K — k™ is a group homomorphism and € € () for some § € ©.

For example in the case h < 1 the analogous problem is solved taking £ = (€¢)¢€q> v
and © = {(&) for £ € £} (see 3.2.41). Once we have found a pair £, 0 as in 3.3.1 we can
formally apply theorems 3.1.45 and 3.1.53. This is done in theorems 3.3.42 and 3.3.45.

Similarly to what happens in the case h < 1, we can restrict our attention to the case
when M is generated by two elements m,n and the first problem to solve is to describe
M-graded algebras A over a field k generated in these degrees m,n (see 3.3.9). This is
done associating with A an invariant g4 € N (see 3.3.31) and this solution also suggests
how to proceed for the next problem, i.e. find the sequence £ of problem 3.3.1.

When M is any finite abelian group, it turns out that the extremal rays £ for M such
that he = 2 correspond to particular sequences of the form x = (r,«, N,q, ¢), where
r,o, N,q € N and ¢ is a surjective map from M to a group M, o n generated by two
elements (see 3.3.6). The sequence of smooth extremal rays “needed” to describe the
substack {h < 2} is composed by the “old” rays (£"),cs,, and by these new rays. Finally
the smooth sequences in the family © of problem 3.3.1 will all be given by elements of
the dual basis of particular Z-basis of K (see 3.3.34).

In the last subsection we will see (Theorem 3.3.55) that the normal crossing in codimen-
sion 1 D(M)-covers of a locally noetherian and locally factorial scheme with no isolated
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points and with (char X, |M|) = 1 can be described in the spirit of classification 3.2.43
and extending this result.

Notation 3.3.2. If m € M we will denote by o(m) the order of m in the group M.

3.3.1 Good sequences.

In this subsection we provide some general technical results in order to work with M-
graded algebras over local rings. So we will consider given a local ring D, a sequence
m = mi,...,m, € M and C € D(M)-Cov(D) generated in degrees my,...,m,. Since
Pic(D)=0 for any u € M we have Cy, ~ D. Given u € M, we will call v, a generator of
Cy and we will also use the abbreviation v; = vy,;. Moreover, if A = (A1,...,4,) € N
we will also write
Uézvfh---vf’“

Definition 3.3.3. A sequence for u € M is a sequence A € N” such that Aymq +--- +
A,m, = u. Such a sequence will be called good if the map C’;gll R ® C’;g’; — Cy is
surjective, i.e. v4 generates Cy,. If r = 2 we will talk about pairs instead of sequences.

Remark 3.3.4. Any u € M admits a good sequence since, otherwise, we will have C,, =
(D[v1,...,vp])u € mpCy. If Ais a good sequence and B < A, then also B is a good
sequence.

Lemma 3.3.5. Let A, B be two sequences for some element of M and assume that A is
good. Set E = min(A, B) = (min(A;, B1),...,min(A4,, B;)) and take A € D. Then
vB = d = BE = A E

Proof. Clearly we have vE(vB~E — \pA~E) = 0. On the other hand, since A — E is a

good sequence, there exists p € D such that vBE = yovA~E. Since A is a good sequence,

substituting we get vA(u —A) =0 = pu=\. O
3.3.2 M-graded algebras generated in two degrees.
Definition 3.3.6. Given 0 < o« < N and r > 0 we set

MT,Ot,N = ZQ/<(r7 —a), (07 N)>

Proposition 3.3.7. A finite abelian group M with two marked elements m,n € M
generating it is canonically isomorphic to (M, o N,e1,e2) where r = min{s > 0 | sm €
(n)}, rm = an and N = o(n). Moreover we have: |M| = Nr, o(m) =rN/(a,N) and

m,n#0andm#n < N>1and (r>1ora>1)
Proof. We have

(Lo %)

0—72 2 " 7% 5 Myon — 0 exact = [Myqn| =

r 0
det< L N>‘—7“N
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and clearly e, es generate M. Moreover M, o n/(e2) ~ Z/rZ and therefore r is the
minimum such that re; € (ez). Finally it is easy to check that N = o(e2). If now
M,r,a, N are as in the statement, there exists a unique map M, ,ny — M sending
e1,e2 to m,n. This map is an isomorphism since it is clearly surjective and |M| =
o(m)o(n)/[(m) N (n)| = o(n)r = |M; o n|. The last equivalence in the statement is now
easy to prove. ]

Notation 3.3.8. In this subsection we will fix a finite abelian group M generated by two
elements 0 # m,n € M such that m # n. Up to isomorphism, this means M = M, , N
with m = e, n = ep and with the conditions 0 < a < N, r >0, N >1, (r>1lora>

1).
We will write d, the only integer 0 < d; < N such that grm + dyn = 0, for ¢ € Z, or,
equivalently, d; = —ga mod (V).

Problem 3.3.9. Let k£ be a field. We want to describe, up to isomorphism, algebras
A € D(M)-Cov(k) such that A is generated in degrees m,n and H,/, = 0. Thanks to
3.2.31, this is equivalent to asking for an algebra A such that H,/, = 0 and

{teM | hamy =1} C{m,n}
The solution of this problem is contained in 3.3.31.

In this subsection we will fix an algebra A as in 3.3.9, we will consider given a graded
basis {v;}iepr of A and we will denote by v the associated multiplication. Note that
H /1, = 0 means vy, v, ¢ A

Definition 3.3.10. Define
z=min{h > 0|3 €N, X € k such that v, = v}, and hm = in}

z=min{h > 0|3i €N, p € k such that v = pv, and hn = im}

Denote by 0 <y < o(n), 0 < w < o(m) the elements such that zm = yn, xn = wm, by

A, i € k the elements such that vZ, = \vi, v = pv®, with the convention that A = 0 if

vp =0 and p =0 if v¥ = 0. Finally set ¢ = z/r and define the map of sets

{O,l,...,z—l}L{O,l,...,o(n)}

¢t min{d € N | v&vd = 0}

We will also write G4, 24, T4, Y4, WA, A4, pa, fa if necessary.
We will see that A is uniquely determined by § and A up to isomorphism.

Lemma 3.3.11. Givenl € M there exists a unique good pair (a,b) forl with 0 < a < z.
Moreover 0 < b < f(a).
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Proof. Existence. We know that there exists a good pair (a,b) for [ and we can assume
that @ is minimum. If a > z we can write v&v? = )\vﬁ,jzvffy. Therefore A # 0 and
(a — z,b+ y) is a good pair for 1, contradicting the minimality of a. Finally v2v% # 0
means b < f(a).

Uniqueness. Let (a,b), (a’,b") be two good pairs for [ and assume 0 < a < a’ < z. So
there exists w € k* such that

a,b __ a', b b _ a’'—a, b/
Ve, = wus v, = v, = wus v,

If b >t then @’ — a > 2z by definition of z, while if b < o’ then v, is invertible. O

Definition 3.3.12. Given [ € M we will write the associated good pair as (&, ;) with

& < z. We will consider £, as maps Z /(eg) — Z and, if necessary, we will also write
EA 54,

Notation 3.3.13. Up to isomorphism, we can change the given basis to
v = vf,{vgl
so that the multiplication ¥ is given by
Vatp = vErTE SO = g U = g e (3.3.1)
Corollary 3.3.14. f is a decreasing function and
fO)+---+ f(z—1) = |M] (3.3.2)

Proof. 1f (a,b) is a pair such that 0 < a < z and 0 < b < f(a) then v&v% # 0, i.e. (a,b)
is a good pair for am + bn. So

z—1

Y@ =H@b)[0<a<z 0<b< fa)} =|M|

c=0

Remark 3.3.15. The following pairs are good:
(z—=1)m:(z—1,0), (x—1)n: (0, —1), zm=yn:(0,y), zn =wm : (w,0)

Le. ve 1 =1 p¥ vw £ (. In particular f(0) > z,y + 1 and f(c) > 0 for any ¢. Indeed
m »Un »Un,Upm p Y y

z—1 _ a,b z—l—a __ b _ —
Uy = WU, = Uy, =wy, —a=2—1,b=0
z a b z—a __ b _ _
Uy, = WUV, = U, " =W, = a=0,b=y

where (a, b) are good pairs for the given elements and, by symmetry, we get the result.
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Remark 3.3.16. If A # 0 or  # 0 then z = y, z = w and Ay = 1. Assume for example
A # 0. If y = 0 then v?, = X # 0 and so vy, is invertible. So y > 0 and, since vj, = A\~ 17,
we also have y > x. Now

0 # vy, = Al = A\uvd ™ v,

m

So 1 # 0 and (y — z,w) is a good pair. As before w > z and therefore
AP F =1 = y=x, w=xand Ap=1
Lemma 3.3.17. Let a,b € M. We have:

o Assume E,p > 0. If 64 < 0 then Ep > 2, dqp > —y. Moreover ,p # 0 =
AN#0,E0p = 2,00p = —y(= —x) and in this case g = .

o Assume Eqp < 0. Then Ep > —w,0qp > x. Moreover i, p #0 <= pn#0,E =
—w(= —2),0qp = = and in this case Yqp = p.

o Assume Eqp = 0. Then we have dqp =0 and g p =1 or §qp > o(n) and g = 0.
Proof. Set 1) = 1, 3. We start with the case £, > 0. From 3.3.1 we get

Ea 611
Um ’bvg,aJréb = 1/“)71 o

If 640 >0 then vm vn =1 and so ¢ = 0 since vy, ¢ A*. If 6, < 0 we instead have

vi{l b =y, %ab and so Eap > 2. If =045 <y then (0, —04) is good. So we can write

Eab— é
Ut AR P = = =0

since vy, is not invertible. If 6, < —y we have

0<Ep—2<2 0< =0gp—y < f(0), (Eap—2)m = (—bap—y)n, VEP TN = Yo, dapy

and so both (.4 — 2,0) and (0, —d4p — y) are good pair for the same element of M.
Therefore we must have &, = z, 0qp = —y and ¥ = .

Now assume &, = 0. If J,5 < 0 then vn e, *4h) = 1 which is impossible. So 6, > 0. If

dap = 0 clearly ¢ = 1. If 6,5 > 0 then vn =1 and so0 ¥ = 0 and 0, > o(n).
Finally assume &, < 0. From 3.3.1 we get

—& da
,Ufla‘f‘éb — w,um a’b’Un +b

We must have d,; > 0 since vy, is not invertible. So vn = Yup, £ab and 0q,p = x, from
which 5 c

Unab X ;L;;Z — d}/UT_n a,b
Note that, since 0 < =& < Eqip < 2, (—E€ap,0) is a good pair. If w > —&, then
1 = 0. So assume w < —&, ;. Arguing as above we must have d,5 = =, £, = —w and
Y= p. O
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Lemma 3.3.18. Define
A = K[s,1]/(s*, st for0 < ¢ < 2)

Then A’ € D(M)-Cov(k) with graduation degs = m, degt = n and it satisfies the
requests of 3.5.9, i.e. A’ is generated in degrees m,n and Hyr 1, = 0. Moreover we have

Tu =Tqu, 240 = 24, yar = ya, EV =4 64 =54 Ay = pa =0, far = fa

Proof. Clearly the elements s°t¢ for 0 < ¢ < z, 0 < d < f(c) generates A’ as a k-space.
Since they are Zi;é (c) = |M| and they all have different degrees, it is enough to prove
that any of them are non-zero. So let (¢/,d’) a pair as always. It is enough to show that
B = k[s, t]/(s Tt ) — A7 /(s¢F1 ¢4 1) is an isomorphism. But ¢ < z implies that
s =01in B. If ¢ < ¢ then s°/(®) = 0 in B and finally if ¢ > ¢ then &' +1 < f(¢/) < f(c)
and so s°¢/(© =0 in B.

The algebra A’ is clearly generated in degrees m,n and H 4 /i = 0 since s* = tf0 =0
and z, f(0) > 0. Moreover s* = 0tY implies that 2z’ = z4» < z. Assume by contradiction
2 < z From 0 # s* = Nt¥ we know that t¥ # 0 so that y/ < f(0). Therefore
(€ 02rm) = (2/,0) = (0,9') and so 2’ = 0, which is a contradiction. Then 2’ = z,
yar =y =y. Also s* = 0tY and t¥ # 0 imply Ay = 0 and, thanks to 3.3.16, us = 0.
Finally by construction we also have €4 = &, 64" = § and fa4 = f. O

Lemma 3.3.19. We have

Proof. Thanks to 3.3.18 we can assume A = 0 and, therefore, y = 0. So v% = 0, vZ~! £ 0
and vy, # 0 imply y < z = f(0). Let 1 < ¢ < gand [ = qr. We have (&,6;) = (¢r,0). If
N —d, <z = f(0) then we will also have (&,0;) = (0, N — d,) and so ¢ = 0, which is
not the case. So N —dy > x>y =N —dg = d,; <dj. O

Lemma 3.3.20. Define ¢ as the only integers 0 < § < q such that

d; = min d
1 0<g<g !
z if0<c<qgr

If X =0 we have d; < z = f(0) andf(c)—{dA far<c<z
q —

Proof. We want first prove that f(c) = min(z,d, for 0 < gr < ¢). Clearly we have the
inequality < since v} = vIvie = 0. Set d = f(c) and let (a,b) a good pair for cm + dn,
so that v¢,ve = 0v%v2. We cannot have b > d since otherwise v¢, = 0 implies ¢ > 2. If
azcthenvg:0andsod:f(c) > x. Conversely ifa <cthen0<c—a=qr<c<z
and 0 <d—b=d,; <d= f(c).

We are now ready to prove the expression of f. Note that the pairs (¢r,d, — 1), with
0 < g < G, are all the possible pairs for —n. So there exists a unique 0 < ¢ < g such that

(gr,dg — 1) is good. In particular if 0 < g # ¢ < § we have an expression

- dg—1
-1 5 di—1 = T = - >
vg;“vﬁq =0lv,! = a< 4 Un 0 dg =
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Since vzq_l # 0 we must have d; < x. This shows that ¢ = ¢ and the expression of f.
Finally If § > 1 then ¢ > 0 and so d; < z = f(0) since f is a decreasing function. If
g=1theng=0andso N =d; = f(0) <z <N. O

Definition 3.3.21. We will continue to use notation from 3.3.20 for ¢ and we will also
write 4 if necessary.

3.3.3 The invariant 3.

Lemma 3.3.22. Let 8, N € N, with N > 1, and define dqﬁ = dgy, for q € Z, the only
integer 0 < dy < N such that dy = g8 mod N. Set

Qan ={0<q=<0(B,Z/NZ) = N/(N,B) | dy <dq for any 0 <" < q},
set qn for the n-th element of it and denote by 0 < ¢ < q,, the only number such that

d; = min d
17 2o,
Then we have relations ¢N +qndg—qd,, = N and, ifn > 1, ¢, = qn—1+4, dg,, = dg,_, +d4
and dg, , +dqg > N for g <q.

Proof. First of all note that all is defined also in the extremal case § = 0. In this case
Qs n = {1}. Assume first n > 1. Set ¢ = ¢, — gn—1 so that dg, = dg, , + dg since
dg, > dg,_,. Assume by contradiction that ¢ # ¢. Since ¢ < g, we have d; < dz. Let
also ¢’ = ¢, — ¢ and, as above, we can write dg, = dy + dj. Now

dg, —dg = dg < dg = dg, —dg, , = dg,_, <dy

n

Since ¢,—1 € Qg n we must have ¢’ > g,—1, which is a contradiction because otherwise,
being ¢’ < ¢, we must have ¢’ = ¢,. So ¢ = ¢. For the last relation note that, since ¢,
is the first ¢ > g,—1 such that d4 > dg,_,, then ¢ is the first such that d,,_, +d; < N.
Now consider the first relation. We need to do induction on all the 5. So we will write
dqﬁ and qﬁ in order to remember that those numbers depend on to 5. The induction
statement on 1 < ¢ < N is: for any 0 < 8 < N and for any n such that qﬁ < q the
required formula holds. The base step is ¢ = 1. In this case we have n = 1, ¢1 = 1,
G = 0, dg = N and the formula can be proven directly. For the induction step we can
assume ¢ > 1 and n > 1. We will write cjﬁ for the ¢ associated to n and (. First of all
note that, by the relations proved above, we can write
BN + gy — @ld’s = GIN + gy d, — ald),

n—1

and so we have to prove that the second member equals N. If (jﬁ < qgfl then (jﬁfl = (jﬁ

B g

and the formula is true by induction on ¢ —1 > ¢,_;. So assume ¢, > qf_l and set

a = N — 3. Clearly we will have

o=o0(a,Z/NZ) = o(f,Z/NZ) and d’g +dy = N forany 0 < g <o
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Moreover
dgg < df forany 0 < q < ¢ = d2s > dy for any 0 < ¢ < ¢ = 3 st. ¢ =

and

B

n—1

d’BB 2d§f0rany0<q<q5 = d% gdgforany0§q<qla:qg = ' =¢q

n
qn—-1 9n_1

B B

Using induction on ¢j* = ¢ < gn < ¢ we can finally write

N =GN +qfdge — g die = g7 (N +djd7 g d

quqN +q2(N — dfﬁ

n—1

) — ng(N - d?g) = AgN + Q£71d§g - difﬂ

n—1

O

We continue to keep notation from 3.3.8. With d, we will always mean dév ~% as in
3.3.22. Lemma 3.3.19 can be restated as:

Proposition 3.3.23. Let A be an algebra as in 3.5.9. Then gy € Qn_aN-

So given an algebra A as in 3.3.9 we can associate to it the number g4 € Qn_q N.
Conversely we will see that any ¢ € Qn_, v admits an algebra A as in 3.3.9 such that
G = G4 It turns out that all the objects z4, ya, fa, 4, 04, Ga and, if Ay = 0, 4, wa
associated to A only depend on G 4. Therefore in this subsection, given g € Qn_qo n, We
will see how to define such objects independently from an algebra A.

In this subsection we will consider given an element g € Qn_q, N-

Definition 3.3.24. Set ¢ for the only integer 0 < ¢ < g such that d; = ming<4<zdy,
q/:q_Q7 z:ar7 y:N_dE7

[ N—dy ifg>1 [ dr ifg>1 [ oz f0<e<gr
x_{ N ifg=1 ’w_{ 0 itg=1 7974 tir<c<s

. . A / .
We will also write 4z, ¢7, 23, ¥7, fg Yz, wg if necessary.

Remark 3.3.25. Using notation from 3.3.22 we have § = g, for some n and, if n > 1, i.e.
q>1, gu_1 = ¢. Note that zm = yn, wm = an, y < x, w < z. Moreover, from 3.3.22
and from a direct computation if § = 1, we obtain zz — yw = |M|. Finally if § > 1 one
has relations ¢r = z —w and dg = = — y.

Lemma 3.3.26. We have that:
1) f is a decreasing function and Zi;& (¢) =|M]|;
2) any element t € M can be uniquely written as

t=Am+ Bn with0 < A< z,0< B< f(A)
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Proof. 1) If g = 1 it is enough to note that § = 0, dp = N and Nr = |M|. So assume
g > 1. We have x = N — dy > d; since dg = dy + d4 and

z—1

Do fe) = dra+ (@r—dr)dg = (z — w)z + w(z - y) = 2z —wy = |M]|
c=0

2) First of all note that the expressions of the form Am + Bn with 0 < A < z,
0 < B< f(A) are Zi;é (c) = |M]|. So it is enough to prove that they are all distinct.
Assume we have expressions Am + Bn = A‘m + B'nwith0 < A < A< 2,0< B<
f(A),0< B < f(A).

A'=B =0,ie. Am+Bn=0. If A =0 then B =0since f(0) =z < N. If A >0, we
can write A = gr for some 0 < ¢ < @. In particular g > 1 and B =d, < f(A). If ¢ < g
then f(A) =x =N —dy > dg4 contradicting 3.3.22, while if ¢ > ¢ then f(A) =d4 < d,,.

A'=B=0,ie. Am = B'n. If A =0 then B’ = 0 as above. If A > 0 we can write
A = gr for some 0 < ¢ < @. Againg > 1. In particular B = N—d, < f(0) =2 = N —dy
and so dy < dg, while dy = maxg<q<qdy.

General case. We can write (A — A")m + Bn = B'n and we can reduce the problem
to the previous cases since if B > B’ then B — B’ < B < f(A) < f(A — A’), while if
B < B then B' — B < B' < f(A') < £(0). 0

Definition 3.3.27. Given [ € M we set (&, ;) the unique pair for [ such that 0 < &, <
z, 0 < 8 < f(&) and we will consider £, § as maps ZM /(eg) — Z. We will also write
&1, 57 if necessary.

Proposition 3.3.28. Let A be an algebra as in 3.3.9. Then
RA = Zq,4 YA = Yq,» 4a = Q§A7 SA = gaAa 5A = 5EA7 fA = fﬁA
and, if Ay =0, then x4 = xg,, wa = wg,,.

Proof. Set ¢ = q4. Then 24 = qr = zz and zg4m = yan = ygn implies y4 = yg. Also
da = {g by definition. Taking into account 3.3.18 we can now assume Ay = 0. We claim
that all the remaining equalities follow from x4 = x7. Indeed clearly wq = wg. Also by
definition of f7 and thanks to 3.3.20 we will have f4 = f7 and therefore £4 = £7, §4 = §9,
that conclude the proof.

We now show that x4 = 2. If g = 1 then ¢ = 0 and so, from 3.3.20, we have
dg =N =x4 =21. If g > 1, by definition of f7 and thanks to 3.3.26 and 3.3.20, we can
write

zg—1 za—1
|M| = Z fa(c) = rdgrg + (2q — Ggr)dg, = Z fa(c) =rdaxa+ (za — qar)d;,
c=0 c=0
and so r4 = zg. O
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Definition 3.3.29. Define the M-graded Z[a, b]-algebra

q _ 2 gy g pow Gryds oy _ 0 ifg=1

A = Zla,b][s, t]/(s* — at¥, t* — bs", st — a7b) where 7y { 1 ifg>1

with M-graduation degs = m, degt = n. If are given elements ag, by of a ring C' we will
also write A7 , = AT ®@g[qy C, where Z[a,b] — C sends a,b to ag, bo.

Proposition 3.3.30. A7 € D(M)-Cov(Z[a,b]), it is generated in degrees m,n and {v; =
sEt0 Y cns is an M -graded basis for it.

Proof. We have to prove that, for any | € M, (A%); = Z[a,bJv; and we can check this
over a field k, i.e. considering A = Ag,b with a,b € k. We first consider the case a,b € k*,
so that s,t € A*. Let m: Z? — M the map such that m(e;) = m, m(e2) = n. The set
T = {(a,b) € Kerrm | s%* € k*} is a subgroup of Ker 7 such that (z, —y), (—w,z) € T.
Since det Zy —xw = zx —wy = |M| we can conclude that T" = Ker 7. Therefore v;
generate (A7), since for any ¢, d € N we have s°t% /vep1an € k* and 0 # v, € A*.

Now assume a = 0. If g = 1 then § = w =0, d; = x = N and so A = k[s, t]/(s*,t" —b)
satisfies the requests. If § > 1 it is easy to see that v; generates A;. On the other hand
dimy A=|{(A,B)|0<A<20<B<z,A<gror B<ds}|=zx—(z2—qr)(x—dg) =
zx —yw = |M|. The case b = 0 is similar. O

Theorem 3.3.31. Letk be a field. Ifq € Qn—an and X € k, with A =0 ifg = N/(a, N),
then |
Ag = k[s, 8]/ (s — \¥7, 7 g7 %o )

is an algebra as in 3.3.9 with Ga,, =1 and Aa_, = A. Conversely, if A is an algebra as
in 3.3.9 then Gy € AN_an, Aa €k, Aa=0ifgy = N/(a,N) and A~ Az, »,.

Proof. Consider A = Az x, which is just Ai,o- Clearly t ¢ A*. On the other hand s ¢ A*
since y =0 <= 2z =o(m) <= q= N/(a,N). Therefore Hy/, = 0 and A is an
algebra as in 3.3.9. Moreover clearly g4 < g. If by contradiction this inequality is strict,
we will have a relation s7" = wt¥’ with 0 < ¢ < g. Since 7" = Vgrm 7 0 we will have that
v # 0 and ¢y’ < x, a contradiction thanks to 3.3.26. In particular A = \4.

Now let A be as in 3.3.9 and set § = G4, A = Aa. We already know that g € Qn_q N
(see 3.3.23). We claim that the map Ag x — A sending s, to vp,, vy, is well defined and
so an isomorphism. Indeed we have vZ, = Avj, by definition and, thanks to 3.3.28, we
have v&vi? = 0 since dg = fa(gr) and v} = 0 since f4(0) = z. Finally if § = N/(a, N)
then y = y4 = 0 and z = o(m), so that A =™ = 0. O

Corollary 3.3.32. Ifk is an algebraically closed field then, up to graded isomorphism, the
algebras as in 3.3.9 are exactly Ag1 if ¢ € Qn—a,n—{N/(a, N)} and Ago if § € Qn_a,N.

Proof. Clearly the algebras above cannot be isomorphic. Conversely if A € k* (and
g < N/(a, N)) the transformation ¢t — ¥/At with y = y; yields an isomorphism Ag ) ~
Az 1. O
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3.3.4 Smooth extremal rays for h < 2.
In this subsection we continue to keep notation from 3.3.8,i.e. M = M, , n and we will
considered given an element g € Qn_q N-

Remark 3.3.33. We have 2 =1 < g=r=1and x =1 <= §= N. Indeed the first
relation is clear, while for the second one note that, by definition of x and since N > 1,
we havex =1 <= dy =N -1 <= q¢= N/(a,N),(o,N) = 1.

Lemma 3.3.34. The vectors of K

Vem,dn 0<ec<z0<d< f(e)

Um,im O<i<z—-1

Un,jn O<yj<er—-1 (333)
Um,(2—1)m ifz>1

Un,(z—1)n if x> 1

form a basis of K. Assume qr #1 and §# N, i.e. z,x > 1, and denote by A, A the last
two terms of the dual basis of 3.3.3. Then A, A € KY and they form a smooth sequence.
Moreover A = 1/|M|(z€ + wé), A = 1/|M|(yE + z6) and

0 ifg=1 :{0 ifg=N/(a,N)

1 otherwise 1 otherwise

Am,—m = An,—n =1, An,—n = {

Proof. Note that we cannot have z = z = 1 since otherwise |[M| = f(0) = =z = 1, ie.
M = 0. The vectors of (3.3.3) are at most rk K since

z—1 z—1
d(fle)=D+z—243-242=> (f()=1)+2-1=|M|-z42—1=|M|-1=rkK
c=1 c=0

If 2 =1 then (3.3.3) is Vnn,- -+, Vp (a—1)n- S0 @ = [M| = N, i.e. n generates M, and
(3.3.3) is a base of K. In the same way if z = 1, then m generates M and (3.3.3) is a
base of K.

So we can assume that 2z, > 1. The functions £ and § define a map Z /(eg) NG
Denote by K’ the subgroup of K generated by the vectors in (3.3.3), except for the last
two lines. We claim that (£,d)x» = 0. This follows by a direct computation just
observing that if we have an expression Am+ Bn as in 3.3.26, 2)) then (€, 9)(eam+pn) =
(A, B). Consider the diagram

™
U(el):vm,(z—l)mQ(e2):'Un,(g;—1)n /\
ag (576)
72 —— K/K' — ZM /(e, K'Y — 72 — ZM /{eo, K') —— M
U T(e1)=em,T(e2)=¢n pley)=l

We have (575)(vm,(zfl)m) = (27 _y) since y < & = f(O) and (gaé)(vn,(xfl)n) = (—'lU,IL’)
since w < z. So |detU| = zx — yw = |M]| and, since 7 o U = 0, U is an isomorphism
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onto Kerw. Moreover 771 = (£,6) since ¢; = e + d1e, mod K'. Tt follows that o is
an isomorphism and so (3.3.3) is a basis of K.
Consider now the second part of the statement. Clearly A, A € (€,6)g. Therefore we

have ( ) /| M]|
B A Um,(zfl)m =1 :(J,Z—yb a=2x M
A—ag+b57{ A@n?(ril)n):(]:azb—aw b:w/|lj|

and the analogous relation for A follows in the same way. Now note that, thanks to
3.3.31 and 3.3.28, we have that £ = £4, § = 64 for an algebra A as in 3.3.9 with G4 = 7,
A4 = 0 and sharing the same invariants of §. So we can apply 3.3.17. We want to prove
that A, A € K7 so that they form a smooth sequence by construction. Assume first that
Eup > 0. Clearly Agp, Agp > 0 if §55 > 0. On the other hand if d, < 0 we know that
Eap > z and 0y p > —y and so

IM|Agp = 2€0p + wiep > 22 —yw = M| and [M|Agp = yEap + 20ap > yz — 2y =0

The other cases follows in the same way. It remains to prove the last relations. Since
—n = grm+ (dg—1)n, we have &, _, = ¢r and 0, _,, = dg. Using the relation zzx —wy =
|M| the values of A, _p, A, _p can be checked by a direct computation. Similarly,
considering the relations —m = (gr — 1)m +dgn if 1 <gq, —m = (r —1)m + (N — a)n
ifg=1and o #0, —m = (r — 1)m if @ = 0, we can compute the values of A, _,,, and
A —m. O

Proposition 3.3.35. The multiplication of A7 (see 3.5.29) with respect to the basis
v = vEd is: at? if g = N, where ¢p: M — Z)IM|Z, ¢(m) = 1; b" if gr = 1, where
n: M = Z/)|IM|Z, $(n) = 1; a®b® if gr # 1, §# N, where A, A are the rays defined in
3.3.34.

Proof. In the proof of 3.3.30 we have seen that if x = 1 (g = N), then M = (m) and A7 =
Zla,b][s]/(sM] — a), while if z =1 (gr = 1) then M = (n) and A7 = Zla, b][t]/(tM| — b).
So we can assume z,z > 1. Let B the D(M)-cover over Z[a, b] given by multiplication
1 = a®b® and denote by {w;}1enr a graded basis (inducing v). By definition of A, A we
have w; = wilwd for any | € M and Y, (z—1)ym = @ Vn (e—1)n = b. Therefore

z X w
Wy = WmW(z—1)m = QWzm = AWyn = aw?, wy = WnW(z—1)n = bwgn = bwym = bwy,

. _ _ gr  dg
and, checking both cases § = 1 and § > 1, whwy! = w_pwy = a»nbPrn = g7, In
particular we have an isomorphism A? — B sending vy, vn t0 Wy, Wn. ]

Notation 3.3.36. From now on M will be any finite abelian group. If ¢: M — M, o n is
a surjective map, 7, o, IV satisfy the conditions of 3.3.8, ¢ € Qn_o n Withgr #1, §# N
then we set A"*N@¢ = Ao ¢, A"NGP = Ao ¢,, where A, A are the rays defined in
3.3.34 with respect to r,a, N,q. If ¢ = id we will omit it.
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Definition 3.3.37. Set

0<a<N,r>0, N>1, (r>lora>1)
Z:M: (raaaN7aa¢) QEQN—O&,]\U 67“7& 17 6055—'5 1 mod N
qg# N/(o,N), ¢: M — M, o n surjective

and A*: ¥y — {smooth extremal rays of M}.

Remark 3.3.38. Since e, e1 generate M, o n, there exist unique r", ¥, NV with an iso-
morphism (—)V: Mo N — Myv v nv sending e, e; to er,ea. One can check that
rV = (a,N), NV =rN/(a,N)and oV = gr, where ¢ is the only integer 0 < ¢ < N/(a, N)
such that ga = (o, N) mod N.

If Ais an algebra as in 3.3.9 for M, , n, then, through (=)Y, A can be thought of
as a M,v ov yv-cover, that we will denote by AV, and A is an algebra as in 3.3.9 with
respect to Mv ov nv, With Gav = 2za/(o,N), Aav = pa. We can define a bijection
(=) On_an — {N/(N,a)} — Qnv_av.nv — {NY/(a¥,NV)} in the following way.
Given g take an algebra A as in 3.3.9 for M, o v with g4 = and A4 # 0, which exists
thanks to 3.3.31, and set §¥ = g4v. Taking into account 3.3.16 and 3.3.28, 7" = yz/(o, N)
since T4 = ya = yg and (f)v is well defined and bijective since Aav = pugq = )\21. Note
that the condition gaw = 1 mod N is equivalent to ¥ =1 and gV =1

Finally if ¢: M — M, o v is a surjective morphism then we set ¢¥ = (=) oop: M —
M,v ov nv. Note that in any case we have the relation (—)vv
1Y =a/rY,g=a"/ris the dual of 1 € Qnv_q,v nv.

= id. In particular, since

Proposition 3.3.39. Let r,a, N be as in 3.5.8, ¢ € Qn—_q,n withqr # 1, ¢ # N and
¢: M — M, o N be a surjective map. Set x = (r,a, N,q,¢). Then

1) G=N/(a,N): AX = &, & M -2 Myan — Myan/(m) = (n) ~ Z/(a, N)Z;
Ga=1mod N: AX =85, ¢: M N M, on = (e1);

2) q=1: A= &% w: M -2 Myqn — Myan/(n) = (m) ~ Z/rZ;
wg=1: AX=E° 0: M -2 My n = (e3);

8) §>1 and wg # 1: AX = AmNG=4:9,
In particular in the first two cases we have hax = hax = 1.

Proof. We can assume M = M, .y and ¢ = id. The algebra associated to oA*, oA
are respectively Cg = k[s, t]/(s%, 1% — s¥,s%t% — 07), By = k[s, t]/(s* — t¥,t%, s7"t%) by
3.3.35.

1) If § = N/(a, N), then z = o(m), y = 0, d3 = (a, N) and so By = ks, t]/(s°™) —
1,t(@N)) the algebra associated to 0%, If ga = 1 mod N then ¥ = (o, N) = 1 and
g=a/r,ie. ¢V =1. Soy=1and B ~ k[s]/(s/M]), the algebra associated to 0F".

2)Ifg=1,thenz=r,§=w=0, 2 =d; =N and so C; = k[s,t](t" — 1,s"), the
algebra associated to 0°“. If w = 1 then § > 1 and so C; = k[t]/(tM), the algebra
associated to ¢’
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3) If g > 1 then He, = 0 and so (7 is an algebra as in 3.3.9. An easy computation
shows that z¢, = w > 1, so that do, =7 — ¢ and A7 = 1. Therefore AX = AT NG=4 by
3.3.31. 0

Proposition 3.3.40. XY, = X/ and we have a bijection
A*: S /(=) — {smooth extremal rays £ with hg = 2}

Proof. ¥}, C X since go # 1 mod N is equivalent to g¥rY # 1. Now let € be a smooth
extremal ray such that he = 2 and A the associated algebra over some field k. We can
assume H,,, = He = 0. The relation hg = 2 means that there exist 0 # m,n € M,
m # n such that A is generated in degrees m,n. So M = M, , v as in 3.3.8 and A is an
algebra as in 3.3.9. By 3.3.31 and 3.3.39 we can conclude that there exist y € X7 such
that £ = AX.

Now let x = (r,a, N,q, ¢) € ¥pr. We have to prove that hax = 2 and, since M, o y #
0, assume by contradiction that Aax = 1. We can assume M = M, , y and ¢ = id. Note
that hax = 1 means that the associated algebra B is generated in degree m or n. If A is
an algebra as in 3.3.9, then A is generated in degree n if and only if z = 1, that means
gr = 1. So B is generated in degree m, i.e. BY is generated in degree ey € My ov NV,
which is equivalent to 1 = zgv = grY = 1, and, as we have seen, to go = 1 mod N.

Now let ' = (', o/, N', @, ¢') € s such that £ = AX = AX'. Again we can assume
He = 0 and take B, B’ the algebras associated respectively to x,x’. By definition of
Ay, ¢,¢ are isomorphisms. If g = ¢/ 0 ¢™1: M, o N —> M,/ o nv then we have a graded
isomorphism p: B — B’ such that p(B;) = B;(l)' Therefore g({e1,e2}) = {e1, e}, i.e.
g=1id or g = (=)". It is now easy to show that x’ = y or ¥’ = x". O
Notation 3.3.41. Weset &)y = {¢: M — Z/IZ |1 > 1, ¢ surjective}, ©2, = {9} pea,, U
{(AX, AX)}xeiMﬂ where ¥/ is the set of sequences (7, a, N, q, ¢) where r, o, N € N sat-
isfy 0 <o < Ny» > 0,r > 1lora > 1,7 € Qn_on satisfy gr # 1, g # N and
¢: M — M, o n is a surjective map. Finally set £ = (£, AX)¢6¢M7erM/(_)v.

Theorem 3.3.42. Let M be a finite abelian group. Then

h<2t=(J 2DHUC U 2™

PED M (A,A)e02,

In particular {h < 2} C Z37. Moreover ng: Fg — D(M)-Cov induces an equivalence
of categories

{leamzner|, [, one 200, o<y =0

Proof. The expression of {h < 2} follows from 3.3.31 and 3.3.35. Taking into account
3.3.40, the last part instead follows from 3.1.45 taking © = 9?\/[. O

78



3 Galois Covers under diagonalizable group schemes.

In | | the authors prove that the toric Hilbert schemes associated to a polyno-
mial algebra in two variables are smooth and irreducible. The same result is true more
generally for multigraded Hilbert schemes, as proved later in | |. Here we obtain an
alternative proof in the particular case of equivariant Hilbert schemes:

Corollary 3.3.43. If M is a finite abelian group and m,n € M then M-Hilb™" is
smooth and vrreducible.

Proof. Taking into account the diagram in 3.2.11 it is enough to note that D(M)-Cov™" C
{h< 2} C Z3n. 0

Proposition 3.3.44. Xy = 0 if and only if M ~ (Z/27)" or M ~ (Z/3Z)".

Proof. For the only if, note that if ¢: M — Z/IZ with | > 3 is surjective, then, taking
m=1—-1, n=1¢€Z/IZ, we have Z/IZ ~ M, ;_1; and (1,1 —1,1,2,¢) € X.

For the converse set M = (Z/pZ)!, where p = 2,3 and, by contradiction, assume
we have (r,a, N,q,¢) € Y. In particular ¢ is a surjective map M — M, o n. If
e1,e2 € M, N are Fp-independent then M, , n = (e1) X (e2), @« = 0, Qn_on = {1}
and therefore § = 1 = N/(a, N), which implies that x ¢ X5;. On the other hand,
if M1,a,p ~ Z/pZ, the only extremal rays for Z/pZ are Eid and, if p = 3, £ since
Kyzpm ~ NP1 by 3.2.19. O

Theorem 3.3.45. Let M be a finite abelian group and X be a locally noetherian and
locally factorial scheme. Consider the full subcategories

codimy V(z;,)N---NV(z,) > 2
i35 €02, st €1, g Cs [ Fe(X)

¢t ={L Mz R0
and
7% = {v L5 X € D(M)-Cov(X) | hy(p) < 2¥p € X with codim, X < 1} C D(M)-Cov(X)
Then mg induces an equivalence of categories
Cx =75 (P%) — D%
Proof. Apply 3.1.53 with © = ©3,. O

Remark 3.3.46. In general {h < 3} does not belong to the smooth locus on Z,;. For
example, if M = Z/4Z, D(M)-Cov = {h < 3} is integral but not smooth by 3.2.19 and
3.2.21.

3.3.5 Normal crossing in codimension 1.

In this subsection we want describe, in the spirit of classification 3.2.43, normal crossing
in codimension 1 covers of a locally noetherian and locally factorial scheme with no
isolated points and with (char X, |M]) = 1.
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Definition 3.3.47. A scheme X is normal crossing in codimension 1 if for any codimen-
sion 1 point p € X there exists a local and etale map Oy, — R, where R is k[[z]] or

k[[s,t]]/(st) for some field k and @X,p denote the completion of Ox .

Remark 3.3.48. If X is locally of finite type over a perfect field k, one can show that the

above condition is equivalent to having an open subset U C X such that codimx X —-U >

2 and there exists an etale coverings {U; — U } with etale maps U; — Speck[z1, ..., zpn,]/ (1 y,)
for any i. Anyway we will not use this property.

Notation 3.3.49. In this subsection we will consider a field & and we will set A =
k[[s,t]]/(st). Given an element { € Autyk[[z]] we will write { = &(x) so that, if
p € E[[z]] then £(p)(z) = p(&). We will call I € Auty k[[s,t]] the unique map such
that I(s) =t, I(t) = s. Given B € k* we will denote by B the automorphism of k[[z]]
such that B, = Bx.

Finally, given f € k[[z1,...,2,]] and ¢g € k[z1,...,z,] the notation f = g+ --- will
mean f =g mod (z,...,x,)%89+L

The first problem to deal with is to describe the action on A of a finite group M and
check when A is a D(M)-cover over AM | assuming to have the |M|-roots of unity in k.
We start collecting some general facts about A.

Proposition 3.3.50. We have:
1) A=k sk[[s]] ® tk[[t]]
2) Given f,g € A—{0} then fg =0 if and only if f € sk[[s]],g € tk][[t]] or vice versa.

3) Any automorphism in Auty A is of the form (§,n) or I(§,n) where §,n € Auty, k[[z]]
and (§,1)(f(s,t)) = f(&s,m)-

4) If & € Auty k[[z]] has finite order then & = B where B is a root of unity in k. In
particular if (§,m) € Autg A has finite order then & = B, n = C where B, C are
roots of unity in k.

5) Let f € k[[z]] — {0}, B,C roots of unity in k. Then f(Bz) = Cf(z) if and only if
C = B for some r > 0 and, if we choose the minimum v, f € z"k[[z°P)]].

Proof. 1) is straightforward and 2) follows easily expressing f and ¢ as in 1). For 3)
note that if 6§ € Auty A then 0(s)0(t) = 0 and apply 2). Finally 4) and 5) can be shown
looking at the coefficients of &, and of f. O

Lemma 3.3.51. If M < Auty A is a finite subgroup containing only automorphisms of
the form (€,m) then AM ~ A,

Proof. Tt is easy to show that AM ~ k[[s?, t]]/(s%t") ~ A where a = lem{i | 3(4,B) €
M st. ord A =1} and b=Ilem{i | 3(4,B) € M s.t. ord B =i}. O

Since we are interested in covers of regular in codimension 1 schemes (and A is clearly
not regular) we can focus on subgroups M < Auty A containing some I(£, 7).
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Lemma 3.3.52. Let M < Auty A be a finite abelian group and assume that (char k, |[M|) =
1 and that there exists I(§,nm) € M. Then, up to equivariant automorphisms, we have
M = (1(id, B)) or, if M is not cyclic, M = ((C,C)) x (I) where B, C are roots of unity

and o(C) is even.

Proof. The existence of an element of the form I(£,n) in M implies that s and ¢ cannot
be homogeneous in m4/m?, that 2 | |[M| and therefore that char k # 2.

Applying the exact functor Hom]k\/[ (ma /m%7 —), we get that the surjection my —
ma/ m% has a k-linear and M -equivariant section. This means that there exists x,y € mg
such that my = (z,y) and M acts on z, y with characters x, (. In this way we get an
action of M on k[[X, Y]] and an equivariant surjective map ¢: k[[X, Y]] — A. Moreover
Ker¢ = (h), where h = fg and f, g € k[[X,Y]] are such that ¢(f) = s, ¢(g9) = t.
We can write f = aX +b0Y 4+ -+, g = ¢cX +dY + -+ with ad — bc # 0. Since
ar + by = s in my/ m124 and s is not homogeneous there, we have a,b # 0. Similarly
we get ¢,d # 0. In particular, up to normalize f, g, * we can assume b =c =d = 1.
Now h = aX? + (a +1)XY + Y2 4 ... and applying Weierstrass preparation theorem
[ , Theorem 9.2|, there exists a unique h € (h) such that (h) = (k) and h =
Yo(X) + 11 (X)Y 4+ Y2, The uniqueness of h and the M-invariance of () yield the

relations m(h) = n(m)?h,

m(1o) = Yo(x(m)X) = n(m)*bo, m(r) = 1 (x(m)X) = n(m)i (3.3.4)

for any m € M. Moreover h = puh where p € k[[X,Y]]* and, since the coefficient of Y2
in both h and h is 1, we also have w(0) = 1. In particular 1o = aX? +--- and ¢ =
(a+1)X +--- and so (a+1)(x—¢) = 0 by 3.3.4. Since s is not homogeneous in m4/m?,
x # nand a = —1. Since char k # 2 we can write b = (Y +1)1 /2)% — (2 /4—)g) = y>— 2.
Note that ¢/, 2’ are homogeneous thanks to 3.3.4. Moreover, by Hensel’s lemma, we can
write 2/ = X2 + ... = X?2¢? for an homogeneous q € k[[z]] with ¢(0) = 1. So 2’ = zq is
homogeneous and h = y'?> — /2. This means that we can assume s =z — vy, t = = + .
In particular x2 = n? and M acts on s,t as

X—¢

m(s) = XS m)s + XSyt mt) = XS s + S (e
2 2 2 2
Consider the exact sequence
0 H M (11} o0 (3.3.5)

If M is cyclic, say M = (m), we have x(m) = —n(m) and so m = I(B, B), where
B = (x(m) —n(m))/2 is a root of unity. Up to normalize s we can write m = I(id, B).
Now assume that M is not cyclic. The group H acts on s and ¢ with the character
Xz = ¢ u and this yields an injective homomorphism xg: H — {roots of unity of k}.
So H = ((C, C)) for some root of unity C'. The extension 3.3.5 corresponds to an element
of Ext!(Z/27, H) ~ H/2H that differs to the sequence 0 — H — Z/20(C)Z —
{-1,1} — 0. So H/2H ~ Z/27Z, o(C) is even and the sequence 3.3.5 splits. We can
conclude that M = ((C,C)) x (m), where m = I(D, D) for some root of unity D and
o(m) = 2. Normalizing s we can write m = I(id, D) = 1I. O
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Table 3.3.1:
’ H ‘ m,n,r,a, N, G B ‘ E ‘
7)27 1,1,1,1,2,1 ML 28
(2/227)? (1,0),(0,1),2,0,2, 1 el EPTL 4 EPT2
Z/QZZZ: 1Z/2Z (1,0),(1,1),2,2,2(,1 iyl A22.21.1
Z/AIZ 1,204 1,1,21+ 1,412 | go—papsil by | A2
z f/flozd . 1,0+1,2,2,0,1 Ty A2

Proposition 3.3.53. Let M < Auty A be a finite abelian group such that (char k, |M]) =
1 and that there exists I(§,m) € M. Also assume that k contains the |M|-roots of unity.
Then AM ~ k[[z]], A € D(M)-Cov(AM) and only the following possibilities happen: there
exists a row of table 3.3.1 such that M ~ H is generated by m,n, H ~ M, o, N, A~ B
as M-covers, where degU = m, degV = n and A over AM is given by multiplication
2€. Moreover all the rays of the form A* in the table satisfy ha- = 2.

Proof. We can reduce the problem to the actions obtained in 3.3.52. We first consider
the cyclic case, i.e. M = (I(id, B)) ~ Z/2lZ where | = o(B). There exists E such that
E? = B. Given 0 < r < |M| = 2I, we want to compute A, = {a € A | I(id, B)a = E"a}.
The condition a = ¢+ f(s)+g¢(t) € A, holds if and only if a = 0 when r > 0, f(t) = E"g(t)
and g(Bs) = E" f(s). Moreover f(t) = E~"g(Bt) = E-2" f(Bt) = f(Bt) = B"f(t). If
we denote by d, the only integer such that 0 < 4, <[ and §, = r mod [, we have that, up
to constants, A" is given by elements of the form E" f(s) + f(t) for f € X% k[[X!]]. Call
B=s+t e Ay=AM and v, = E"s + 1o, vy = 1. We claim that AM = Ay = k[[f]]
and v, freely generates A, as an Ag module. The first equality holds since Ay is a domain
and we have relations

Zansnl + Zant”l = Zan(sl +thn = Z anB"

n>1 n>1 n>1 n>1

while the second claim come from the relation
E"s% (¢4 h(s)) + t% (¢ + h(t)) = (E"s° 4+ t°")(c + h(s) + h(t)) for h € X'k[[X"]]

and the fact that v, is not a zero divisor in A.

So A € D(M)-Cov(k[[5]]) and it is generated by v1 = Es+t and vj4; = —Es+t and
so in degrees 1 and [+ 1. If | = 1, so that M ~ Z/2Z, B =1, E = —1 and v? = 2. This
means that A ~ k[[8]][U]/(U? — 82) and its multiplication over k[[8]] is given by 526"
This is the first row. Assume [ > 1 and set m =1, n =1+ 1. Note that 0 # m # n and
that M ~ M, , n for some r, o, N that we are going to compute.

[ odd. We have r = o = 2 and N = [ since ({ + 1) = (2) C Z/2IZ. Consider
g =1 € QnnN—q and the associated numbers are z =r =2, y=a =2, ¢ =0, dj =
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x =N =1, w=0. Since vj = v/,, and Ull+1 = 3, we will have A ~g) A%\,u where
M= 1,8 € K[[B]] (see 3.3.29) and therefore the multiplication is 82" by 3.3.35.
This is the fifth row.

leven. We haver =1, a =141, N =2l since (I+1) = Z/2lZ. Since d; =1—1 = —«
and dp = 21 — 2 = 2(—«) modulo 2/ we can consider § = 2 € Qn_, n. The associated
numbers are z =y =2, (=1, ds=1—-1, e =N —(dg—dg) =1l+1, w=1=2zn=
(I4+1)2 mod 2I. Since vi = Uf”_i_l, vi ;= Buy and U‘leUld_il = B, we will have A >~ Ai,u
where )\, u = 1, 8 € k[[8]] whose multiplication is 211202, This is the fourth row.

Now consider the case M = ((C,C)) x (I) with o(C) = I even. Set 8 = s' + t,
vio = s+t and v = —s + t. Note that v,; is homogeneous of degree (r,7). Set
m = (1,0), n = (1,1). They are generators of M and so M ~ M, , ny for some r,c, N.
We have N = o(n) =1, r > 1 since (n) # M and so r = 2 since 2m = 2n. If [ = 2 we
get = 0 and if [ > 2 we get &« = 2. Choose ¢ = 1 so that the associated numbers are
2=2,y=0a, §=0,d; =x=N =1, w=0. As done above, it is easy to see that
AM = E[[B]]. We first consider the case [ = 2. Since vig =B, v, = B we get a surjection
A}j’ 5 — A which is an isomorphism by dimesion. From the expression of Aé, 5 We can
deduce directly that the multiplication is "' T€™? where pr;: (Z/2Z)? — Z/27 are
the two projections. This is the second row.

Now assume [ > 2. Since U%,o = v%l and vll’l = [ and arguing as above we get
A i8] A}\’# where A\, u = 1, 8 € k[[]] and the multiplication BA**"! This is the third
row.

Finally the last sentence is clear by definition of s and 3.3.40. O

Remark 3.3.54. If X is a locally noetherian integral scheme and there exists a D(M)-
cover Y/X such that Y is normal crossing in codimension 1, then X is defined over a
field. Indeed if char Ox(X) = p then F, C Ox(X). Otherwise Z C Ox(X) and we
have to prove that any prime number ¢ € Z is invertible. We can assume X = Spec R,
where R is a local noetherian domain. If dim R = 0 then R is a field, otherwise, since
ht(q) < 1, we can assume dim R = 1 and R complete. By definition of normal crossing
in codimension 1, if Y = SpecS and p € Y is over mpr we have a flat and local map
R — S — S, — B, such that B contains a field k. The prime ¢ is a non zero divisor
in R and therefore in B. In particular 0 # ¢ € k* C B* and ¢ € R*.

Theorem 3.3.55. Let M be a finite abelian group, X be a locally noetherian and lo-
cally factorial scheme with no isolated points and (char X, |M|) = 1. Consider the full
subcategory

NC% ={Y/X € D(M)-Cov(X) | Y is normal crossing in codimension 1} C D(M)-Cov(X)

Then NC')I( # 0 if and only if each connected component of X is defined over a field. In
this case define

E? for ¢ M — ZJ17 surjective with | > 1,

A22LLS for ¢ M — Ms o surjective with | > 3,
AV2AFLAL2S for ¢ M — My 911141 surjective with [ > 1

[On
I
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and ‘5]{,07)( as the full subcategory of Fg(X) of objects (L, M, z, ) such that:

1) forall€ # 6 € £, codim V (zg)NV (2z5) > 2 except for the case where £ = £, § = EV

/—\ 7./27.

— s (2/27)?

p 7./27.

in which vy(2ge) = vp(zgs) = 1 if p € YW NV (260) NV (2g0);

2) for all € € £ and p € YV v,(z¢) < 2 and vy(ze) = 2 if and only if £ = £ where
¢: M — 727 is surjective.

Then we have an equivalence of categories
CKNC’X =Tg '(NCk) = NCx

Proof. The first claim comes from 3.3.54. We will make use of 3.3.45. If Y/X € NCY
and p € Y1) we have hyx(p) < dimy, mp/mf, < 2 since etale maps preserve tangent
spaces and di]rnmA/m?4 < 2. So NC)l( - .@)2(.

Let 0 be the sequence of smooth extremal rays used in 3.3.45. We know that 7r5_1 (NC%) C
‘5)2( So we have only to prove that 7['5_1(NC)1() C Fe(X) € Fs(X) and that any element
Y eN C)l( locally, in codimension 1, satisfies the requests of the theorem. Since X is
a disjoint union of positive dimensional, integral connected components, we can assume
that X = Spec R, where R is a complete discrete valuation ring. Since R contains a field,
then R ~ k[[z]] . Let x € 7' (2%) and D the associated M-cover over R. Let C' be the
maximal torsor of D/R and H = Hp /. Note that, for any maximal ideal ¢ of C' we have
Cy ~ k(q)[[z]] since C/R is etale. Moreover Spec D € NC% for M if and only if for any

maximal prime p of D Spec D,, € NCépeC , for M/H, where ¢ = C'Np. In the same way

X € ‘K&ny for M if and only if, for any maximal prime ¢ of C, X|specc, € %J{IC,spec c, for
M/H. We can therefore reduce the problem to the case Hp /r = 0. We can also assume
that k contains the |M|-roots of unity.

First assume that Spec D € N C’il/. If D is regular, the conclusion comes from 3.2.43.
So assume D not regular and denote by p: R = k[[z]] — D the associated map. We
know that D/m4 = k. By Cohen’s structure theorem we can write D = k[[y]]/] in
such a way that p;, = idg. By definition, since D is local and complete, there exists an
etale extension D — B = L][[s,t]]/(st). Using the properties of complete rings, B/D
is finite and so B ~ D ®; L. Replacing the base R by R ®; L we can assume that
D =~ k[[s,t]]/(st). The function pp,: k — D extends to a map v: D — D sending
s, t to itselves. This map is clearly surjective. Since Spec D contains 3 points, v induces
a closed immersion SpecD — Spec D which is a bijection. Since D is reduced v is
an isomorphism. This shows that we can write D = A = k[[s,t]]/(st) in such a way
that p), = idg. So D(M) =~ M acts as a subgroup of Auty A such that AM ~ E[[2]].
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In particular, by 3.3.51, there exists I({,n) € M. Up to equivariant isomorphisms the
possibilities allowed are described in 3.3.53 and coincides with the ones of the statement.
So X € Gy x-

Now assume that x € ‘5&,0’ y- By definition of mg the multiplication that defines D
over R is something of the form ¢ = Az, where X is an M-torsor and & is one of the
ray of table 3.3.1. The case £ = £? comes from 3.2.43. Since, in our hypothesis, an
M-torsor (in the fppf meaning) is also an etale torsor, replacing the base R by an etale
neighborhood (that maintains the form k[[z]]), we can assume A = 1. In this case, thanks
to 3.3.52 and 3.3.53, we can conclude that A ~ k[[s, t]]/(st) as required. O

Corollary 3.3.56. Let X be a locally noetherian and regular in codimension 1 (normal)
scheme with no isolated points, M be a finite abelian group with (char X, |M|) = 1 and
|M| odd. If Y/X is a D(M)-cover and Y is normal crossing in codimension 1 then'Y is
reqular in codimension 1 (normal).

Proof. Since Y/X has Cohen-Macaulay fibers it is enough to prove that Y is regular in
codimension 1 by Serre’s criterion. So we can assume X = Spec R, where R is a discrete

—1
valuation ring, and apply 3.2.43 just observing that Regy = Cf]{,cx. O

Remark 3.3.57. We keep notation from 3.3.55 and set 6 = (€",n: M — Z/dZ surjective ,d >
1). We have that m; {(NC%) = ‘Kﬁ,qx N Fg, i.e. the covers Y/X € NC% writable only
with the rays in d, has the same expression of %1{76‘,  but with object in F5. Therefore the
multiplications that yield a not smooth but with normal crossing in codimension 1 covers

are only £% + &Y, where ¢, 1 are morphism as in 1), and £2?, where ¢: M — Z/27

is surjective. This result can also be found in | , Theorem 1.9]. In particular, if

M = (Z/2Z)", where § = £ thanks to 3.3.44, these are the only possibilities.
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4 Equivariant affine maps and
monoidality.

The aim of this chapter is the study of G-covers for general groups, but with particular
attention to the linearly reductive case. We now briefly summarize how this chapter is
divided.

Section 1. We will introduce the definition of linearly reductive groups and study their
representation theory. Looking for an analogous behaviour to the representation theory
for groups over a field, we will introduce the notion of good linearly reductive groups
(briefly glrg). We will then focus on linearly reductive groups over strictly Henselian
rings and their action on finite algebras. The last part will be dedicated to the study of
induction of equivariant algebras from a subgroup.

Section 2. We will prove the equivalence between the category of G-equivariant quasi-
coherent sheaves of algebras over a scheme T and the category of linear, left exact,
symmetric monoidal functors Loc® R —» LocT. The first step will be to establish a
correspondence between G-equivariant quasi-coherent sheaves and functors as above, but
without any monoidal structure and then describe how the properties of commutativity,
associativity and existence of a unity translate into properties of the associated functor.
We will then determine what functors correspond to G-covers and G-torsors and, when G
is a super solvable glrg, we will also describe a simpler criterion to distinguish G-torsors
among (G-equivariant algebras.

Section 3. In this section we will prove that G-Cov is reducible if G is a linearly
reductive and non abelian group. The proof is based on the use of what we will call rank
functions, that allow us to distinguish G-Cov inside LAIg% and their behaviour under
induction from a subgroup.

Section 4. This section is dedicated to the problem of regular in codimension 1 G-
covers. We will describe such covers using the trace map associated with an algebra and
we will also discuss a possible extension of the results to the non equivariant case.

In this chapter, we will often prove statements valid over any scheme and, in order to
simplify the reading, the letter T, if not stated otherwise, will denote a scheme over the
given base.

4.1 Preliminaries on linearly reductive groups.

In this section we will study the representation theory of finite, linearly reductive groups.
In particular we will introduce the notion of good linearly reductive groups (glrg). This
class of groups has a very special representation theory, very close to the one of usual
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linearly reductive groups over an algebraically closed field.

We will then focus on groups over strictly Henselian rings, where their structure is
simpler and finally we will discuss the properties of induction and state some useful
results.

We will consider given a base scheme S and a flat, finite and finitely presented group
scheme G over S.

4.1.1 Representation theory of linearly reductive groups.

As the section name suggests, in this section we will introduce the notion of linearly
reductive groups and discuss their representation theory. In particular we will define
the notion of good linearly reductive group (briefly glrg): these are the groups admit-
ting a set of geometrically irreducible representations with which is possible to describe
any equivariant quasi-coherent sheaf, analogously to what happens over an algebraically
closed field. Let GG be a linearly reductive group. We will prove that if GG is defined over
an algebraically closed field or if it is diagonalizable then it is a glrg. Moreover we will
show that G is always fppf locally a glrg and, if G is étale, also étale locally. In particular
any étale (and therefore constant), finite linearly reductive group defined over a strictly
Henselian ring is a glrg.

In what follows G will be a flat, finite and finitely presented group scheme over the given
base. Before dealing with linearly reductive groups, we prove the following propositions,
which will be very useful.

Proposition 4.1.1. Let X = Spec & be an affine S-scheme with a (right) action of G
and F be a quasi-coherent sheaf over S. Then we have a G-equivariant isomorphism

¢: Homg(X,W(F)) — W(F ® &)
If X = G, with the regular action on itself, we have vertical isomorphisms

MG(%, W(F)) — Hoim(Gl,2 W(F))
W(F) W(F ® Og[G])

where v: F — F ® Og|G] is the structure map. In particular v yields an isomorphism
F ~ (F® Og[G)) of sheaves (without actions).

Proof. Notice that we will only use that G is an affine scheme. Let m: X — S be the
structure morphism. Note that if U is an S-scheme, then W(F) x U ~ W(F ® Op) as
sheaves over U and, since m,m*F ~ F ® &/, we have that

(W(F)xU)(X xU) =HUX x U, 7{/(FoOp)) = H(U,F®@ o @ Oy) = W(F@ ) (U)

where 7y is the base change of m to U. In particular, by Yoneda’s lemma, the natural
transformation ¢: Homg(X, W(F)) — W(F ® &) given by

du(X x U -2 W(F) x U) = 6(idx )
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is an isomorphism. We have to show that ¢ is G-equivariant and we can assume that
S = Spec R, for some ring R. Denote by {: F ® o/ — F ® </ @ R|G] the action of G on
F ® & induced by ¢. We want to prove that £ coincides with the structure morphism of
the tensor product of representations F ® /. In general if M is an R-module with an

action of G then the multiplication by idg on W(M)(G) = M ® R[G] yields the structure
map M — M ® R|G]| Mom, R|[G] of M. In particular, by definition we have

£(r) = ¢g(idg - ¢E;1(33 ® 1)) = [idg - <]5E;1(a: ® D](idxxg) for x € F @ o
Given 0: X x G — W(F) x G we have
(idg - 0)(idx x¢g) = idg - (d(idx ¢ - idg))

Moreover (idxxg -idg): X x G — X x G is given by the (right) action of G on X,
i.e. it is the Spec of the structure map pu: & ® Og[G] — & ® Og[G]. On the other
hand, given z € F ® R[G]| ® & = Hom(X x G, W(F) x G) then idg - z = (v ® idy)(2),
where 7: F @ R[G] — F ® R|G] is the structure map, i.e. the R[G]-linear map such
that 7(x ® 1) = v(x). Finally, by definition of the Yoneda’s isomorphism, we have

¢g (2@ 1)(U == X x G) = [W(F)(a)](z ®1) € (W(F) x G)(U) = W(F)(U)

In conclusion ¢! (z ® 1)(Spec 1) = (idF ® p)(z ® 1). Putting everything together we get
that £ is the composition

Fed20sG] “Z2 Fode0s(G] ~ FoOs|Gled 2292, FeOsGled ~ Fod20s(G)

which induces the classical co-module structure on the tensor product F ® o7
Now let & = Og[G]. The map

Hom(G, W(F)) — W(F)
P

is an isomorphism. The composition

W(F) " Hom%(G, W(F)) € Hom(G, W(F)) -% W(F @ Os[G))

yields a map w: F — F ® Og[G]| and we have to prove that w = v. Again we can
assume that S = Spec R, for a ring R. Given x € W(F)(R) = F we have

Or(ng' () = g (2))(de) = idg - (+® 1) =P(z ® 1) = v(z)
as required. ]

Lemma 4.1.2. Let R be a ring and M € QCoh® R. Then there exists a G-equivariant
presentation
(RIGT)® — (RIG])®" — M — 0

If M is finitely presented, then we can choose I and J finite.
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Proof. From 4.1.1 we have an isomorphism
M -2 Hom®(R[G]Y, M) ~ (RG] ® M)
and it is easy to check that ¢.,(¢q) = m, where m € M. Then

P ém: (RG] — M
meM
is G-equivariant and surjective. If M is finitely presented, obviously we can assume [
finite. Let
K = Ker((R[G]Y)] — M)
Since R[G] is locally free, K is locally finitely presented and therefore finitely presented.
O

Definition 4.1.3. The group scheme G is linearly reductive over S if the functor of
invariants

(=)%: QCoh® § —s QCoh S
is exact.

From now on we will assume that G is linearly reductive. Remember that this condition
is stable under base change and is local in the fppf topology ( see | , Proposition
2.6]).

The following lemmas are crucial in the study of the representation theory of linearly
reductive groups over general schemes and they explain how invariants behave for such
groups.

Lemma 4.1.4. Let F € QCoh® S and H € QCoh S. Then the natural map
FCOH — (FOH)C
18 an isomorphism.

Proof. We can assume that S = Spec A, for some ring A, and that F = ]\7, H = N, for
some A-modules M, N. The natural map ME @, N — (M ®4 N)% is an isomorphism,
bacause it is so when N is free and in general taking a presentation of N, taking into

account that (—)% is an exact functor. O

Lemma 4.1.5. Let F € FCoh® S. Then the map F& — F splits locally, F& € FCoh S
and the natural map

W(FC) — W(F)©
is an isomorphism. In particular if F is locally free so is FC.
Proof. The second map in the statement is an isomorphism thanks to 4.1.4. For the local
splitting and the finite presentation of F¢, we can assume S = Spec A, F = M where
A is a ring and M a finitely presented A-module. Moreover, because (—)© is invariant

by any base change, we can also assume that A is noetherian. In this case the splitting
follows from | , Theorem 7.14]. O
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We now recover the property that usually is used as definition of linearly reductive
groups over a field:

Lemma 4.1.6. Assume S = Speck, where k is a field. Then any finite dimensional
representation of G is a direct sum of irreducible representations.

Proof. Any G-equivariant injection V' — W of representations has a G-equivariant
section since the maps

Hom (W, V) — Hom(V, V), Hom® (W, V) — Hom%(V, V)
are surjective. ]

Definition 4.1.7. Given a finite, linearly reductive group G over a field we denote by
I a set of representatives of the irreducible representations of G. We will often say that
I is the “set” of irreducible representations of G or refer to such a “set”, always meaning
that we are choosing a set of representatives.

We want now to find sheaves over S that play the role of the irreducible representations
over a field.

Definition 4.1.8. Given F € QCoh% and V' € Loc® S we define
07 : VY @ Hom® (VY. F) — F, 0f(x ®¢) = ¢(z)
Note that this map is G-equivariant.

Remark 4.1.9. If V € Loc® S we have G-equivariant morphisms and commutative dia-
grams

(u— Y(u)r) @V ¢®v\
InG «——— Hom(V, F \%4 v
Hom (‘l/z,f)®V Hom( \z)® \cb;)

(VWWoF)fV———VVeFeV
YRT RV YRXTRU

Given a collection I C Loc® S we have a natural, G-equivariant morphism

nr =@ PHmC(V,F)@V —F  ¥FeQCoh®s
Vel Vel

Proposition 4.1.10. Let I be a collection of elements of Loc® S. The following are
equivalent:

1) the natural maps

nrF: @HomG(V,]:)®V—>]: Y F € FCoh® S
Vel

are isomorphisms;
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2) same as 1), but for any F € QCoh® T and any S-scheme T.

3) for any algebraically closed field k and geometric point Spec k — S the map
=25 14,
is well defined and bijective;

4) If S is connected, same as 3) but for just one geometric point.

If S = Speck, then I satisfies the above conditions if and only if EndG(V) ~ k for any
Velg.

Proof. Assume first that S = Speck, where k is a field. Given V, W € I5, we have that
any equivariant map V' — W is either 0 or an isomorphism. So 7y, v is an isomorphism
if and only if EndG(V) ~ k. Conversely, if this holds for any irreducible representation of
G, then 7y, , is an isomorphism for all finite representations since these are direct sums
of irreducible representations.

Now consider the general case and given a geometric point Spec k — S denote I, =
{V®Fk|V e€lI}. Since G is linearly reductive and thanks to 4.1.5, we can conclude that
nrF ®k =nr, rer for any F € FCoh® S and that MG(K F) is locally free if F is so.

2) = 1) and 3) = 4). Obvious.

1) = 3). If V € I, since nry is an isomorphism and Hom%(V,V) @V — V is
surjective, we have that Hom%(V,W) = 0if V # W e I and that Hom®(V, V) is an
invertible sheaf. In particular End“*(V @ k) ~ k and V ® k is therefore irreducible for
any geometric point Speck — S, so that I, C I, . For the converse let W € I, . Since
WY ~ (WY ® k[G])¢ ~ Hom® (W, k[G]) by 4.1.1, there exists a G-equivariant nonzero
map W — k[G] ~ Og[G] ® k, which is injective because W is irreducible. On the other
hand the only irreducible representations of Gy, appearing in k[G] are the ones in I}, since
nr,0si6) ® k =11, ka)-

3) = 2) We can assume that 7" = Spec R, where R is a ring. If M € QCoh% R is
locally free of finite rank then 7y ® k = Nig, Mk is an isomorphism for any geometric
point Speck — T. Since both source and target of the map 77 are locally free
thanks to 4.1.5, we can conclude that it is an isomorphism. In particular N1,RjG)Y 1S an
isomorphism. If M € QCoh® R, thanks to 4.1.2 we have a G-equivariant presentation
Vi — Vo — M — 0, where the V; are a direct sum of copies of R[G]". Since
HomG(V, —) ® V is exact when V is locally free, we have a commutative diagram

P Hm (V, Vi) @V __ @Hom(V,Vp) @V __, G Hom“(V, M) @ V
Vel Vel Vel

L1, L 11,vy nr,m

1%l Vo M 0

*)O

The n;,y, are isomorphisms by additivity and therefore we can conclude that n; s is an
isomorphism as well.
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4) = 3) Let Specky — S be the given geometric point. For V,W € I we have
that Hom®(V, W) are locally free and checking the rank on kg, we can conclude that
Hom®(V,W) = 0if V # W and that Hom®(V, V) is invertible. In particular I C Ig,

for any geometric point and therefore 0y, xg] is injective since NG, kG is so. But

dimy, @ Hom(V @ k, k[G]) ® V @ k = dimy, @) Hom®(V & ko, k[G]) @ V @ ko
Vel Vel
= dimko ko [G] = dimk k[G]

so that ny, (@) 1s an isomorphism and Iy = I, . O

Proposition 4.1.11. Let I be a collection of elements of Loc® S satisfying the conditions
i 4.1.10. Then

Hom®(V, W) = 0, Hom%(V,V) = Ogidy for allV#W e 1

If S is connected then I is uniquely determined up to tensorization by invertible sheaves
(with trivial actions).

Proof. Assume S connected. If we tensor the sheaves in I by invertible sheaves, we
do not change their restrictions to the geometric points. Conversely let I’ be another
collection satisfying the condition in 4.1.10. Given W € I’, there exists V € I such that
Hom®(V, W) # 0. The sheaf Hom®(V, W) is locally free thanks to 4.1.5. Changing the
base to all the geometric points of .S, we see that the map HoimG(V, W)@V — W has
to be surjective, that Hom%(V, W) has rank 1 and that rk V' = rk W. In this way we see
that V' and W differ by an invertible sheaf and that V is uniquely determined by W.
Now consider the locally free sheaf @G(V, W) for V(W € I. If V.# W then this
sheaf is 0 because I — Ig, is bijective and therefore V ® k ¢ W ® k for any geometric
point Speck —» S. Finally, if V = W, we see that idy generates Hom®(V, V) in any
geometric point. O

Definition 4.1.12. We will say that G has a good representation theory over S if it
admits a collection [ as in 4.1.10. We will briefly call a glrg (good linearly reductive
group) a pair (G, Ig) where G is a finite, flat, finitely presented and linearly reductive
group scheme over S and I is a collection of elements as in 4.1.10. We will simply write
G if this will not lead to confusion. If ' — S is a map, then Gy = G xg T with the
collection of the pullbacks of the sheaves in I is a glrg and we will always consider G
as a glrg with this particular collection.

Note that if G is a glrg then any V' € I is not only an irreducible representation, but
a geometrically irreducible one. We now show two examples of glrg’s.

Example 4.1.13. Assume S = Speck, where k is a field. Then G has a good repre-
sentation theory if and only if End®(V) ~ k for all the irreducible representations of G
and in this case, up to isomorphism, the only collection I satisfying 4.1.10 is I, the set
of irreducible representations of G. In particular any linearly reductive group G over an
algebraically closed field is a glrg. Indeed if W is an irreducible representation of G then
HomG(V7 W) # 0 for some V' € I, since nyw is an isomorphism. So W ~ V.
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Example 4.1.14. If G is a diagonalizable group with group of characters M = Homg,, (G, Gyy,),
then G has a good representation theory over SpecZ and we can choose as I the set of
representations Zj, given by Z,, — Zp, ® Z|G], 1 — 1 @ m.

The definition of good linearly reductive group is just what we need in order to have a
representation theory for which coherent sheaves with an action of G are just, functorially,
a collection of coherent sheaves. The correct statement, which easily follows from the
definition of glrg and from 4.1.11, is the following:

Proposition 4.1.15. If G is a glrg, then the functors below are quasi-inverse equivalences
of categories

v
EB Vierv. (Fv)verg
QCohg QCoh¢”

Fr— (Ve F)ver

The same statement holds if we replace QCoh by FCoh or Loc.

Example 4.1.16. When G is a finite diagonalizable group with group of characters
M = Hom(G, G,,) and R = Z, since I is in bijection with M, we retrieve the classical
equivalence between QCohg and the stack of M-graded quasi-coherent sheaves.

The following result extends the usual result for linearly reductive groups over an
algebraically closed field.

Proposition 4.1.17. If G is a glrg, then we have an isomorphism

Os[G) ~ @ VeV

Vel

Proof. By 4.1.1, we have
Hom(V, Os[G]) = (V¥ ® Os[G]) =~ V¥
O
We state here the subsequent lemma, although we will use it in the following sections.

Lemma 4.1.18. Given V € Loc% R, the composition

R[G]

VY@V = Hom®(V,R[G]) @ V L= R[G] =% R

is the evaluation ey: VYV @V — R, ey (¢ @ v) = ¢(v). In particular if G is a glrg we
have
g = @ ey : @ VeV ~R[G] — R
Velg Velg
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Proof. The statement is local on R, so we can assume that R[G] is free with basis {wy }.
If p: V.— V ® R[G] is the structure map of V, then the structure map v: VV —
VY @ R[G] has the expression

v(p) = Z((]ﬁ@wz o 1) ® wg

k

The composition in the statement can be written as
friVVe Vv Y VWeRG) eV~ (VYeV)e RG] L% R
So

fol@@v)=ey @D (p@uwiop) @vew) =Y ca(wy)d @ wi(u(v)) € R
k k

Moreover we can write

wu(v) = ka ®wy, and v = Zeg(wk)vk
k k

and therefore ¢ ® wi(u(v)) = ¢(vx) and fy (¢ @ v) = ¢(v). O

We do not know an explicit characterization of glrg’s among the linearly reductive
groups. On the other hand we are going to prove that any finite, flat and finitely presented
linearly reductive group G is fppf locally a glrg. So, up to fppf base change, we can
always assume that we have a collection I of geometrically irreducible representations
and therefore a simpler representation theory. If moreover G is étale, we will show that
G is also étale locally a glrg. In particular we will conclude that if G is étale and defined
over a strictly Henselian ring then it is a glrg.

Lemma 4.1.19. Let X be a proper and flat algebraic stack over a noetherian local ring
R. Denote by k the residue field of R and consider a locally free sheaf Vi of rank n over
X x k. If H*(X x k,End(Vp)) = 0, then there exists a locally free sheaf of rank n over
X xR lifting Vi, where R is the completion of R.

Proof. Taking into account Grothendieck’s existence theorem for proper stacks, we can
assume that R is an Artinian ring (so that R ~ R) and that we have a lifting V of
Vo over X x (R/I), where I an ideal of R such that I? = 0. Define the stack ) over
the fppf site Xg,pr of X whose objects over Spec B — X are locally free sheaves N of
rank n over B with an isomorphism ¢: N ® (B/IB) — V ® (B/IB). A section of
Y — Xgppt yields a lifting of V on X. We are going to prove that ) is a gerbe over Xyt
banded by the sheaf of abelian groups 7, End(Vp), where 7: X x k — X is the obvious
closed immersion. Since H?(X, 7, End(Vp)) = H2(X xk, End(Vp)) = 0 parametrizes those
gerbes (see | , Chapter IV, §3, Section 3.4]), we can then conclude that Y — Xt
is a trivial gerbe, which means that it has a section as required.

I claim that V is trivial in the fppf topology of X, which implies that )} — Xippt
has local sections. Indeed if B is a ring and P — Spec B/IB is a Gl,-torsor then by
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standard deformation theory it extends to a smooth map  — Spec B. In particular,
if we base change to @, we can conclude that P over @ x (B/IB) has a section, which
means that it is trivial.

I also claim that two objects of )V over the same object of Af,p¢ are locally isomorphic.
Replacing again locally free sheaves by Gl,,-torsors, given Gl,,-torsors P, Q over Spec B,
we have to show that an equivariant isomorphism P x (B/IB) — @ x (B/IB) locally
extends to an equivariant isomorphism P —> ). In particular we can assume that P
and @ are both trivial and in this case the above property follows because Gl,,(B) —
Gl,,(B/IB) is surjective, being Gl,, smooth.

The previous two claims show that } — AXf,p¢ is a gerbe. We have now to check
the banding and therefore to compute the automorphism group of an object (N, ¢) € Y

over a ring B. The group Aut(x) consists of the automorphism N 2N inducing the
identity on N/IN. It is easy to check that the map

Homp(N,IN) — Auty, d — idy + 9
is an isomorphism of groups. Since IN = I ®p N we have
Homp(N,IN) =1 ® Endg(N) ~ I/I? ® Endg(N) ~ Endg/m,5(M @ (B/mgB))
O

Lemma 4.1.20. Assume that S = Spec R, where R is a Henselian ring with residue field
k and let V' be a representation of G over k. If V is defined over k then it lifts to R.

Proof. Since G is finitely presented, we can assume that R is the Henselization of a scheme
of finite type over Z. Since G is linearly reductive, we have that H*(B(G x k), —) = 0
and, thinking G-representations as sheaves over B G and using 4.1.19, we obtain a lifting
of V to a representation over the completion R. We can then conclude using Artin
approximation theorem over R. ]

Proposition 4.1.21. There exists an fppf coveringsUU = {U; —> S}ier such that Gx gUj;
is a glrg over U;. If G is étale there exists an étale covering with the same property.

Proof. We first deal with the case S = Spec k, where k is a field. An irreducible represen-
tation V' of Gy is given by a group homomorphism Gy — GI(V). Such a morphism is
defined over a finite extension L/k. Since I¢, is finite we get our extension. Now assume
that G is étale. If k is perfect we already have our result. So assume chark = p > 0.
After passing to a separable extension of k we can assume G constant of order prime to
p. So G is defined over F),, which is perfect and again we have our claim.

Now return to the general case. Since G is finitely presented, we can assume S to be of
finite type over Z. Let p € S and L/k(p) an extension such that G, is a glrg and L/k(p)
is separable if GG is étale. There exists a flat finitely presented map h: U — S such that
f~1(p) ~ Spec L. If L/k is separable we can restrict U and assume h to be étale. This
shows that we can assume that Gy, is a glrg. Now let R be the Henselization of Og.
From 4.1.20 any Gy, representation lifts to R and, since R is a direct limit of algebras
whose spectrum is étale over .S, we get the required result. ]
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Putting together 4.1.20 and 4.1.21 we get:

Theorem 4.1.22. A constant linearly reductive group over a strict Henselian ring has
a good representation theory.

4.1.2 Linearly reductive groups over strictly Henselian rings.

In this section we will study the structure and the actions of a flat, finite and finitely
presented linearly reductive group G in the special case when the base scheme is the
spectrum of a strictly Henselian ring. In particular we will describe the decomposition
into unions of connected components of a finite scheme with an action of G and the
structure of the connected component of G containing the identity.

Through this subsection we will assume S = Spec R, where R is a strictly Henselian
ring. Again G will be a finite, flat, linearly reductive group over R. We start with:

Lemma 4.1.23. If A, B are local R-algebras with A finite, then A ®gr B is local.

Proof. Set k4, kp for their residue fields. Since A ®g B is finite over B it is enough to
note that k4 ®x,, kp is local since k4 /kp is purely inseparable. O

Proposition 4.1.24. We have an exact sequence
0 — G —G—G—0

where G is the connected component of G containing 1 and G is a constant group. More-
over, if p is the characteristic of the residue field of R, then pt|G|, G1 is diagonalizable
and its group of characters Hom(G1,Gy,) is a p-group. The decomposition of G into
connected components is of the form

G=||a;

i€eG

If G acts on a finite R-scheme X, then it acts on the connected components of X and
this action factors through G. Moreover the stabilizers of the connected components of X
are unton of connected components of G.

Proof. Let G = U;je;G; and X = Ujc;X; be the decomposition into connected compo-
nents of G and X respectively and let u: X x G — X the action of G on X. Since
X x G| is connected, there exists a unique k;; € J such that u(X; xG;) C KX Assume
now that X = G with the regular representation. Since y is isomorphic to the projection
G x G — G, it is flat and finite, so u(G; x G;) = Gy, is a connected component of G.
Define a product on I by ¢-j = k; ;. It is easy to check that I is a group, whose neutral
element 1 € I is the index of the connected component of the identity. Set G = I. The
map G — G is surjective and the kernel is exactly G1. Since both G1 and G are linearly
reductive, we can conclude that G is diagonalizable and that p 1 |G| by | , Lemma
2.20|. Set M = Hom(G1,G,,) and k for the residue field of R. If Z/qZ < M, then we
have a surjective morphism Gi1 — fi4,r. S0 iq,r has to be connected and, since it is
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finite and flat, pi4 1 is connected as well. But if ¢ # p then g ~ Z/qZ. Therefore M is
a p-group.

Now return to the general case, i.e. when X is a finite R-scheme. Since p is an
action, then k., . defines an action of G on J. Moreover if g € G;(T") we have that
(X; x T)g € Xj;, and therefore this is an equality since J is finite. In particular

StabX; = || G
i€G | kji=j

O

Notation 4.1.25. We will continue to denote by G the connected component of G, by G
the constant group G/G; and by M = Hom(G1, G,,) the group of characters of G;. Given
an index ¢ € G we will also denote by G; the connected component of G corresponding
to such index.

Corollary 4.1.26. If R = k is an algebraically closed field, then G — G has a unique
section. In particular

GZGIKQ

Proof. Set p = chark. If p =0 then G = G. So assume p # 0 and let G; be a connected
component of G. If we prove that |G;(k)| = 1 then G(k) — G is an isomorphism
(of constant groups) and the section is unique. Since k is algebraically closed, we have
Gi(k) # 0. In particular G; ~ G;. But

Gl(k) = Hom(Grps) (M, k") =0
since M is a p-group. ]

Now we want to study the open subgroups of G.

Remark 4.1.27. If G is linearly reductive as we are assuming, then a subgroup scheme is
again a finite, flat and of finite presentation linearly reductive group scheme (see | ,
Proposition 2.7]).

Proposition 4.1.28. Let H be an open and closed subgroup of G and set

H = |_| Gj wherei € G
JjeHI

The schemes H* are stable under the right action of H on G and they are fppf H-torsors.
Moreover if g € H(T), then H' x T = (H x T)g.

Proof. It h € H and j € Hi then G; x G, = Gjup = Gp—1; C H? where * denote the
regular representation, so H® is H-stable. Since GG is flat and finite, H* has section in
the fppf topology, so we have to prove only the last claim, since the multiplication by g
H xT — (H x T)g is H-equivariant. Let g € H'(T). We can assume that g € G;(T)
for j € Hi. In this case it is enough to note that (G, x T')g = Gp; x T'. O
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We state the following lemma here, although it will be used in the following sections.

Lemma 4.1.29. Let X be a finite R-scheme with an action of G. Then X/G1 has the
same connected components as X.

Proof. We have to prove that if (A,m4) is a local and finite R-algebra with an action
of a diagonalizable group D(H), then Ag is local. So we have to prove that any x €
Ayg —my N Ap is invertible in Agy. Since x ¢ m4 there exists y € A such that zy = 1.
Writing y with respect to the decomposition A = @,y An we get

y=> yp = l=ay=) ay, = ayo=1
heH heH

4.1.3 Induction and G-equivariant algebras.

One of the key points in the study of G-covers in the following sections is the fact that
each such cover, locally (at least on a strict Henselization), can be described from an H-
cover, where H is a proper subgroup of GG, having some extra properties. Algebraically,
this procedure is obtained through an induction from H to GG. So in this section we will
introduce the concept of induction from a subgroup, state some of its properties and then
we will focus on induction of algebras.

Throughout this section we will assume S = Spec R, where R is a ring and G will be
as always a finite, flat and finitely presented group scheme over R.

Remark 4.1.30. Let H be a subgroup of G and F': (Sch/S)°? — (Sets) be a functor
with a left action of H. Regarding G as a H-space via the restriction of the regular

representation, we define
ind§ F = Hom" (G, F)

We endow indg F with the following left action of G. The group G acts on the right on

itself through the product G x G — G and, considering the trivial action of G on F,

we get a left action of G on Hom(G, F') that restricts to a left action of G on indg F.
Concretely, given f: G — F' € Hom(G, F') we have that

f e ind F = Hom (G, F) < f(hg) = hf(g) for all h € H

and if g € G then
(gx )(t) = [(tg)
Definition 4.1.31. If H is a subgroup scheme of G and F € FCoh? we have (see 4.1.1)
W((F @ 0[G])) ~ Hom™ (G, W(F)) = indf; W(F)

So we can define
ind% F = (F @ O[G]) € FCoh®

with the action given by the isomorphism W(ind% F) ~ ind$ W(F).
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The following is a well known property of adjunction between induction and restriction.

Proposition 4.1.32. /. , section 3.3] If H is a flat subgroup scheme of G and
V € FCoh®, W € FCoh!, we have an isomorphism

Hom (Ry V, W) ~ Hom%(V, ind% W)

We now pass to the study of induction of finite algebras with an action of G. From
now to the end of the section G will be assumed linearly reductive.

Definition 4.1.33. We will denote by CAlg® R the category of finite R-algebras A with
a left action of G on them, or, equivalently, a right action of G on Spec A.

Lemma 4.1.34. If R s strictly Henselian, H is an open and closed subgroup of G and
A e CAlg? R then
ind% A ~ H B;
i€G/H
as rings, where the B; are fppf locally isomorphic to A. More precisely, if R’ is an
R-algebra and g € Gi(R') then we have an induced isomorphism

ind% A® R —— ind§ Ao R/

I

Proof. We will make use of 4.1.28. The inclusions H* — G induce an isomorphism of
functors

Hom® (G, W(A)) — [] Hom™ (H', W(4))

So we can set B; for the coherent algebra such that W(B;) ~ Hom! (H?, W(A)). Since
H' is an fppf H-torsor, B; is fppf locally isomorphic to A. For the last claim, note
that H* x R’ = (H x R')g and therefore it is enough to apply Hom® (—, W(A)) to the
commutative diagram of H-spaces

H z
|

G
! |
Hg— G =g

O]

Lemma 4.1.35. Let R be a local ring and A € CAlg® R such that A = R. If G is
constant then it acts transitively on the mazimal ideals of A.
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Proof. Let p,q € Spec A be closed points and assume by contradiction that for any g € G,
q # g(p). In particular we cannot have ¢ C Uzeqg(p) and therefore there exists x € ¢
such that g(z) ¢ p for any g € G. But

[[9(@)€eanA®=gnR=mrCp = g G |g()ep
geG

O

The following proposition is one of the key points in the study of the structure of
covers and we will use it many times in the following sections. It roughly means that
the whole algebra (over which G acts) can be recovered from a local algebra (over which
acts a particular subgroup of G) through induction. In particular it allows us to reduce
problems to local algebras, when we have to deal with properties that behave well under
induction.

Proposition 4.1.36. Assume that R is strictly Henselian and let A € CAlg® R be such
that A = R and p € Spec A be a closed point. Denote by H, the stabilizer of the
connected component Spec Ay, of Spec A. Then we have a G-equivariant isomorphism

- 1G
A — indg, Ap
Proof. Set H = H,. The map A — A, is H-equivariant and therefore we get a map

A i) indfl Ap. Write X, = Spec A, for a closed point ¢ of Spec A. Those are the con-
nected components of X = Spec A. Let also Y = Spec(ind$ 4,), ind% 4, = [Licg/u Bi
and Y; = Spec B;. Assume X,G; = X, where 7 € G. Since Y is mapped to )?p?xnd
Y1G; =Y, we have a decomposition

A ind% A,
|
A

q

l
v
q BZ

We have to prove that all the maps 1), are isomorphisms and that G acts transitively on
the connected components of X.
If X,G; = X4, R is an fppf R-algebra and g € G(R') we have a commutative diagram

AR ——— AR
LYoR LveR
ind% A, ® R’ > ind$ A, @ R’
, ! !
®R u
Aq®R’L>Bi®R/ Ap® R

Since G permutes the connected components of X, thanks to 4.1.34, the composition
uo (1hg ® R') is an isomorphism. Since also u is an isomorphism we can conclude that
1y ® R’ and therefore 1), is an isomorphism.
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It remains to prove that GG acts transitively on the connected components of X. Since
Z = X/Gp has the same connected components as X for 4.1.29, G acts on Z and
Z/G = Spec R, we can assume G = G. In this case the conclusion follows from 4.1.35. [

4.2 Equivariant sheaves and functors.

Given a glrg G over a ring R, proposition 4.1.10 tells us that a G-equivariant quasi-
coherent sheaf F over an R-scheme 7' is determined by a collection of quasi-coherent
sheaves on T indexed by I, namely {(V @ F)}ve I- Since we are mainly interested
in affine maps of schemes, it is natural to ask what additional structure a collection of
sheaves as above must have in order to correspond to a quasi-coherent sheaf of algebras.
We will answer this question but, in order to do that, it will be convenient to associate
to a sheaf F not only a collection, but a whole functor QF = (— ® F)¢ from the
category of locally free and finite G-representations Loc® R to the category of quasi-
coherent sheaves. This has the advantage of making sense for any finite, flat and finitely
presented group scheme G. The functor Q7 is left exact and R-linear. We will show
that a structure of sheaf of algebras on F corresponds to a structure of monoidal functor
on Q7 and we will conclude that the category of G-equivariant quasi-coherent sheaves
of algebras is equivalent to the category of left exact and R-linear monoidal functors
Loc® R — QCohT. When G is linearly reductive, any R-linear functor Loc® R —»
QCoh T is automatically exact, and the above correspondences hold if we consider finitely
presented quasi-coherent sheaves or locally free sheaves of finite ranks instead of all the
quasi-coherent sheaves.

In the last two sections we will consider the case of G-torsors and we will prove that,
in the association above, they correspond to left exact strong monoidal functors. This
result is already proved in | |, and comes from a more general statement. On the
other hand the proof we present here is more elementary. We will also prove a stronger
result when G is a super-solvable glrg (see 4.2.36), always in terms of functors.

In what follows we will consider given a flat, finite and finitely presented group scheme
G over the base scheme S. We will also assume that S is affine, namely S = Spec R,
where R is a ring.

4.2.1 Linear functors and equivariant quasi-coherent sheaves.

In this section we will show how we can pass from a G-equivariant quasi-coherent sheaf
on an R-scheme T to a functor Loc® R — QCoh T and conversely.
We start defining the stack of R-linear functors Loc® R — QCoh(—).

Definition 4.2.1. Given an R-scheme T we define QAdd® T as the category whose
objects are R-linear functors

Q: Loc® R — QCoh T

We will denote by QAddg the stack over Sch/R whose fibers are the categories
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QAddY T. We define the categories LAddY T', CAdd“ T' and the stacks LAdd%, CAdd%
replacing QCoh T by LocT, FCohT respectively in the above definition.

The motivation of the notation QAdd® is that Add stands for additive functors, while
Q recall quasi-coherent sheaves.

Since we have to deal with additive categories that are not abelian, namely Loc® R,
we specify here what we mean by (left) exact functors.

Definition 4.2.2. An additive functor F': &/ — % between additive categories is (left,
right) exact if it sends short exact sequences to (left, right) short exact sequences.

Remark 4.2.3. Notice that, if &7 is not abelian, the definition above does not imply that
an exact functor sends long exact sequences to long exact sequences.

We first state the main Theorem of this section.
Theorem 4.2.4. Given an R-scheme T, we have functors
Fo=Qpg 1 Q

QCoh® T QAddC T
Fr—— QF = (—® F)C

Moreover Q7 is always left exact, there exist a natural isomorphism F — ng and

a natural transformation Q@ — QPRIC which is an isomorphism if and only if Q is left
ezact. In particular QO is an equivalence onto the full subcategory of QAAAC T of left
exact functors.

Remark 4.2.5. Tt is part of the statement of the Theorem that for each Q € QAdd® T
there exists a natural action of G on the quasi-coherent sheaf {2p(g). Moreover we have
to warn the reader that the functor 2* does not extend to a map of stacks, because if
F € QCoh® T and f: T' —> T is a base change, then the natural map f*(F ® V)¢ —
((f*F) ® V)% is not an isomorphism in general. However, assuming Theorem 4.2.4, we
can prove the following.

Proposition 4.2.6. The following conditions are equivalent:
1) G is linearly reductive over R;
2) the functor of invariants (=) : Loc® R — QCoh R is exact;
3) all the R-linear functors §2: Loc® R — QCoh R are left exact

In this case all the R-linear functors Loc® R —s QCoh T are exact and the maps defined
in 4.2.4 yield isomorphisms of stacks

QCoh% ~ QAddE  Loc% ~LAdd%  FCoh$ ~ CAdd%
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Proof. We first prove that if all functors in QAdd® T are left exact, then (—)¢: QCoh® T —
QCoh T is exact. In particular we will have implications 3) = 1) = 2). Given a
surjection ¢: F —s F’ in QCoh® R we define the functor

i G
Q: Loc® R — QCoh T, Qy = Coker((F ® V)G M

(F' @ V)©)
From 4.1.1 we see that (g = 0 and from 4.2.4 we can conclude that Q2 = 0. In
particular Qg = Coker(F¢ — F'%) = 0.

Now assume that (—)¢: Loc® R —s QCoh R is exact. We want to prove that any
Q) € QAdd® T is exact, showing, in particular, implication 2) = 3). It is enough to
prove that any short exact sequence in Loc® R has a G-equivariant splitting. Consider a
short exact sequence in Loc® R

0—V —V —V"—0

This is a split sequence in Loc R. In particular Hom%(V”, =) = (=) o Hom(V", —)
maintains the exactness of such sequence. Therefore the map

Hom%(V", V) — Hom% (V" V")
is surjective and a lifting of idy» yields the required section. ]

Remark 4.2.7. Theorem 4.2.4 is no longer true if S is not affine. For instance let S be
a proper scheme over k such that H%(Og) = k and consider G = 1 and the Og-linear
functor

Q =H"(-) ® Og: Loc¥ S = LocS — QCoh S

If Q >~ (Qogiq @ —)¢ = idpoc g it will follow that any locally free sheaf is free. When
G is linearly reductive, the right class of functors to consider for a general base scheme
S is the one of functors Locg — QCohg. This works also in general, for non linearly
reductive groups, if we restrict those stacks to the fppf site of S. Indeed we have to warn
the reader that in general, if F € QCoh S, the functor (F ® —)¢ does not yield a map of
stacks Locg — QCohg, even when S is affine, because the invariant functor (—)% does
not commute with arbitrary base changes. Anyway in this exposition we have preferred
to avoid technicalities and , for instance, consider the simplest case .S affine.

Remark 4.2.8. When G is a glrg, theorem 4.2.4 and 4.1.15 say that, in order to define
an R-linear functor Q: Loc® R —s QCoh T, it is enough to give quasi-coherent sheaves
(Fv)ver,. We can then set

Qw = @ HomG(V, W) ® Fy
Velg

Before proving theorem 4.2.4 we need some preliminary lemmas, which will be useful
also in other situations.
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Lemma 4.2.9. Given an R-scheme T we have equivalences of categories

F(R) - F
QCohT {R-linear functors Loc R — QCohT'}
F » —QrF

Proof. Clearly R ®pr F ~ F. On the other hand, since F' is R-linear, we can define

YF,V

V® F(R) F(V)
v Fy(x)

where F, = F(R - V): F(R) — F(V). It is straightforward to check that the maps
Vr« — @F(R) — F are natural in F. So it remains to prove that it is an isomorphism.
By additivity of F', vgy is an isomorphism when V is free. Now let V' € Loc R and
consider a presentation Vi — Vo — V with Vi,V free. We have a commutative
diagram

VI® F(R) — Vy® F(R) — V®F(R) 0
l YF, vV l VF,Vy l YF,V
F(V1) F (Vo) F(V) 0

Since V is projective, both rows are exact and since V1, V| are free we can conclude that
YF,v is an isomorphism. O

Corollary 4.2.10. Let Q € QAdd® T. Then there exists a unique natural transformation
yww:V &y — Quegw for Ve LocR, W € Loc® R

such that ypw = idq,, and it is an isomorphism. Moreover 7 is natural also in €1 €

QAdd® T.

Proof. The functors V +— V@Qy and V — Qygw from Loc R to QCoh T coincides on
V = R. Soidg,, extends to a unique natural transformation v_y: — @Qw — Q_gw,
which is an isomorphism. The naturality with respect to W € Loc® R and Q € QAdd® T
follows by a similar trick.

O
We are now ready to define the action of G on Qg for any 2 € QAddET.

Lemma 4.2.11. The co-multiplication

R[G] 2% RG] ® R|G]

is G-equivariant and, given Q € QAdd® T, the map

Qa
Qi) — Qrieric) < Qrig) @ RG]

defines an action of G on Qpq-
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Proof. The map Ag is G-equivariant since (gh) xt = t~'gh = (g*t)h for any h,g,t € G,
where x denotes the regular action of G on itself (see 2.1.1 for the convention used).
Instead the commutative diagrams that Q. has to satisfy in order to be an action
come from the following commutative diagrams of G-equivariant maps, after applying
the functor €.

Ag

R[G] ® R[G] R[G] ® R[G]
Ag

R[G]
e . | ideac | id®e
RIG) @ RIGI ‘RG] ® RG] @ RG]  R|G] —4— R[q]

Lemma 4.2.12. Let Q,T' € QAdd® T, with T left exact. Then the map

Homg p 46 7(2, 1) — Homz(Qg(q), Trig))

o | » OR[G]

is injective and its image is composed of the morphisms §: Qpgiq — g such that, for
any u € End®(R[G]), the following diagram is commutative

e 2, IWe)
1 Qu 5 1T
Qrig) — Trig

Moreover o: 8 — I' is an isomorphism if and only if og|q) is an isomorphism and §2 is
left exact.

Proof. Denote by M the set of maps ¢ as in the statement. Clearly, if 0: @ — I' is a
natural transformation, then opig € M. With all the V' € Loc® R we associate an exact
sequence

W —w —VvV—o
as in 4.1.2. In particular the V; are direct sums of copies of the regular representation
R[G]. Since V is locally free, the dual of the above sequence is still exact and can be
decomposed in two short exact sequences in Loc® R. In particular, since T is left exact,
the sequence

0—>Fv—>FVO —)FVI

is exact too.

Note also that, thanks to the additivity and R-linearity of Q and I', a 6 € M extends
uniquely to a natural transformation d,: £ — I if we restrict those functors to the
full subcategory of Loc® R of sheaves which are direct sums of copies of the regular
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representation. In particular, given 6 € M and V € Loc® R there exists a unique 8y
making the following diagram commutative

0 Qy Qv Qv
l oy l 6V0 l 6V1
0 I'v 1—‘Vo FV1

Here we use that the second row is exact. This shows that the map g in the statement
is injective and tells how to extend a § € M to a map §,: 2 — I". In order to prove that
such map is natural and does not depend on the choice of the exact sequence associated
with V € Loc® R, it is enough to note that every map f: V — W, where W € Loc“ R,
extends to a diagram of G-equivariant maps

0 1% Vo |4
¥; | | £2
0 W Wo Wi

Indeed it is enough to take the dual sequences and note that Hom%(R[G]", —) ~ (R[G]®
—)% is just the forgetful functor QCoh® R — QCoh R by 4.1.1. The last claim follows
easily from the diagram above. O

Proposition 4.2.13. The composition

swap

nv: VA% V@ RG] 2279 v @ RG] 24 R[G] @V for V € Loc® R

defines a natural transformation n: id; ¢  — R[G]®— of functors Loc® R — Loc® R
and Ngjq) = Ag. Given an R-scheme T this map induces a natural transformation

Qv — (Qpg @ V)°

of functors Loc® R x QAdd® T — Coh T which is an isomorphism if V = R[G] or Q is
left exact. Moreover the induced map

Oy: Qy ® VY — QR[G}
is G-equivariant and it is given by

2RP—Q (x)
_—

Qy @ VY ~ Qy ® Hom®(V, R[G]) Qpriq)

Proof. The first claim is a classical result, taking into account the particular comodule
structure we have put on R[G]. Given Q € QAdd® T and applying it on ny for any
V € Loc® R, we get a natural map oy : Qpy — Qrig) ® V such that dgjg) = Qa4 the
comodule structure of Qp(g). If V = R[G] we have a factorization

Qag

Qpie) —= (rie) ® RIG)Y — Qpiey ® RG]

106



4 Equivariant affine maps and monoidality.

and, since (2gjg ® -4 —Q R[G) ® — is a natural transformation of left exact functors,
by 4.2.12 it follows that . factors through a natural transformation 2 — (Qpg(g ® —)¢.

The map 0y in the statement can be obtained applying 2 to the map yy: VoV’ —
R[G] induced by ny. We have to prove that the composition

fv: V @ HomC(V, RIG]) 25¢% v o vV 1Y, R[]

is just the evaluation x ® ¢ — ¢(). By construction we have vy (z®1)) = mpgjg o (ild®
) ony(x). In particular

fV(CU & ¢) = mR[G] o [ld & (EG o ¢)] ] nv(:c) = mR[G] o (ld ® €G) o (ld ® ¢) o ?7‘/(1‘)

Since 7, is natural, we have id ® ¢ o ny = ngig) © ¢ = Ag o ¢ and, since mp|g) © (id®
eq) o Ag = id, that

fv(z®¢) =mp o (id®eg) o Ag(d(z)) = ¢(z)
O

Proof. (of Theorem 4.2.4) The left exactness of Q7 follows from the fact that any short
exact sequence in Loc® R is locally split in Loc R, so that (— ® F) is exact here and the
fact that (=)@ is left exact.

Let now F € QCoh% with structure map F -+ F® R[G]. Thanks to 4.1.1 we have an
isomorphism F — (F@RIG)Y = Qﬁ[G] and we want to prove that it is G-equivariant.
This is equivalent to requiring that the dashed map a making the following diagram
commutative is just u.

ba (F ® R[G])¢ ———— F® R[G]
i | lid@AG
g (F ® R|G] ® R[G])¢ — F ® R[G] ® R[G]
i | | |
p®id ]

F ® R[G]

(F ® R[G]))¢ ® R[G] — F ® R[G] ® R|G]

Note that p ® idoa =id ® Agop = p®id o p and that p ® id is injective. We can

therefore conclude that a = pu.
The natural transformation Q@ — (Qp(g ® —)€ and all the other claims are in 4.2.13.
O

We want now to give a different description of the functor & — Qg = Fq of
Theorem 4.2.4 in the particular case when the group G is a glrg.

Proposition 4.2.14. Assume that G is a glrg. Given Q € QAddg the isomorphisms
(see 4.1.17)

RGl~ P VeV and Qpe — P VYo Qy
Velg Velg
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are G-equivariant and the last one defines a natural isomorphism (—)rjq) — @VEIG VVe
(—)v of functors QAdd% — QCoh&.

Proof. We can assume that Q = Q7 = (F ® —)¢ for some F € QCoh%. The map
w: F — (F @ R[G])? is a G-equivariant isomorphism, where u is comodule structure
on F and its inverse is the restriction of id®e¢, which is therefore G-equivariant. Thanks
to 4.1.18 and using its notation, we have a commutative diagram

eg®idr

(R[G] ® F)¢ RG] ® F F

| ! Jidf
v G % &} ey ®idr
Pvievern  PVvieverPis pa
Velg Velg

and we have to prove that the first vertical map is G-equivariant. But this is true because
in each row the composition of the maps is a G-equivariant isomorphism. ]

4.2.2 Lax monoidal functors and equivariant quasi-coherent sheaves of
algebras.

In this section we want to use the association described above in order to describe the
quasi-coherent sheaves of algebras that have an action of G on it. We will see that
a (non associative) ring structure on a sheaf F € QCoh®, its possible commutativity
and associativity translate as natural properties of the functor Q7. For instance we will
show that a (lax) symmetric monoidal structure over ¥ corresponds to a structure of
associative and commutative sheaf of algebras on F.

We start setting up some definitions:

Definition 4.2.15. Given an R-scheme T, a pseudo monoidal functor Q: Loc® R —»
QCohT is an R-linear functor together with a natural transformation

W Qv ® Qw — Quew for any V,W € Loc” R

A pseudo monoidal functor Q: Loc® R —s QCoh T

1) is symmetric (commutative) if for any V,W € Loc% R the following diagram is

commutative

Q
ty,w

Qy @ Qw —— Qvew

g,

lw,v
Qw @ Qy —— Qwev

where the vertical arrows are the obvious isomorphisms;
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2) is associative if for any V,W, Z € Loc% R the following diagram is commutative

Q .
LV’W®ld
Qy @y @0z — Qvew ®Qz
Jid@b%zg J/L8®W’Z
Yvwez

Qy @ Mgz — Wewez

A unity for Q is an element 1 € Qp such that, for any V € Loc® R, the following diagram
is commutative
Q
LR,V
. ®id/ Qr® Qv — Qrev
Qv ‘d Qv

\ Q
id®1 ‘V,R
Qy @ Qr — Qver

A laz monoidal functor Q: Loc® R — QCohT is a pseudo monoidal functor that is
associative and has a unity 1.

Definition 4.2.16. Given an R-scheme T we define the categories

e QRingsT, whose objects are &/ € QCohT with a map m: & ® &/ — &7, called
the multiplication;

e QRings® T, whose objects are o7 € QCoh® T with a G-equivariant map m: & ®
o — A

e QAIlg® T, whose objects are quasi-coherent sheaves &/ € QRings® T of commuta-
tive and associative algebras with a unity 1 € /€

e QPMon® T, whose objects are pseudo-monoidal functors Q: Loc® R —s QCohT.

e QMon® T, whose objects are commutative lax monoidal functors Q: Loc® R —»
QCoh T'. Here we require that the morphisms maintain the unities.

o AffY T, whose objects are affine schemes X i> T with an action of G on X such
that f is G-invariant;

o ffpSch® T, the full subcategory of Aff T of finite and finitely presented maps;
e Cov®, the full subcategory of Aff® T of covers.

Replacing QCoh with Loc, FCoh we also define LRings 7', LRings® T', LAlg® T', LPMon® T,
LMon® T and CRings T, CRings® T, CAlg® T', CPMon® T', CMon® T respectively

We define the stacks HRingsp, HRingsg, HAlgg, HPMong, HMon% whose fibers over
an R-scheme T is HRingsT), HRingsGT , HAIgGT, HPMon®T, HMon®T respectively,
where H can be Q, C or L. We also define Affg, ﬁpSch%, Cov% as the stacks whose
fibers over an R-scheme T are respectively AffY T, fipSch® T, CovC T..
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Remark 4.2.17. The functors Spec: QAlgh — Aff% and the push forward Aff§ —
QAlg% are each other’s quasi-inverse and restrict to isomorphisms CAlgg ~ ffpSChg and
LAlgg ~ Cov®. Indeed, by [ , Proposition 1.47|, a finite quasi-coherent algebra is
finitely presented as a module if and only if it is so as an algebra.

Remark 4.2.18. The categories QAlg® T, QMon® T are (not full) subcategories of QRings® T,
QPMonC T respectively, because a unity for a ring or for a lax monoidal functor is unique.

The following is another application of 4.2.9.

Lemma 4.2.19. Given Q € QPMon% and V,W € Loc R, V',W’' € Loc® R we have a
commutative diagram

V®QV'®W®QW/ - V®W®QV/®QW/
lLK(gV’,m@W’ J/id@Lvl’W/

VW ®Qvew

Qyev @ Qwew:

Qvegviewew Qveweview

The following proposition describes how much data is needed to define a pseudo
monoidal functor when the group G is a glrg.

Proposition 4.2.20. Assume that G is glrg and define the stack Y whose objects are
(Av,www)vwer, where a4, € QCohg and vy is a map

LV,W : dy R Sy — @ HomG(A,V®W) ® YA

A€lq
Then the functor
QPMon% 5 Y
V,W
(Q,2) 1 (v, Qv @ Qw —= Quew ~ P Hom% (A, V@ W) @ Qa)vwer,)
A€lg

s an equivalence.

Proof. By 4.2.8 and 4.2.19, we see that the map in the statement is fully faithful. We
have only to show that it is essentially surjective. For simplicity, given A, W € Loc® R
we will write Wa = HomG(A7 W). Let x = (9, .vw)v,wel, € Y. By 4.2.8, there exists
Qe QAddg such that Qy ~ @4, and it is given by

Qw = @ Wa ® ap
A€lg

By definition, the map ¢y yield maps tyw: Qy @ QO — Quew for any V,W € Ig.
Given A, T € Loc% R we define L% A s

id®LV’W

QA @ Qp ~ @ Ay @ Ty ® Qy @ Qw @ Ay @Tw @ Qvew =~ Qagr
VWelag VWelg
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where the last isomorphism is induced by ®V,Welg Ay Tw @V RW ~AT. Itis

easy to check that (£ is a natural transformation and that (Q, LQ) € LPMong is mapped
to our starting object y € V. O

Given o € QRings® T with multiplication m, we endow Q with the pseudo monoidal
structure

idem)¢
a ( )

Vo) oWed) —(VoWed ) VoW o)

Conversely given Q € QPMon® T', we define the multiplication on Fo = R[G) by

Q
“R[G],R[G) Om
Qria] ® QRig) HAEA, Qric1eric] — QRG]

We will denote o the sheaf Fq together with the multiplication map.
The following is the main Theorem of this section.

Theorem 4.2.21. Given an R-scheme T, the functors Q* and F, of Theorem 4.2.}
extend to functors

Q* o*
QPMon® TQAIg® T
A A

QRings® T QMon® T

Moreover there exist a natural isomorphism of — QRQ%[G] and a natural transformation

Q — QURIC which is an isomorphism if and only if 0 is left exact. In particular QF is
an equivalence onto the full subcategory of QPMon® T' (QMon® T) of left exact functors.
If G is linearly reductive the above functors define isomorphisms of stacks

Rings$ ~ QPMon%, CRings% ~ CPMon%, LRings$ ~ LPMon§
R R R R R R
QAIlg% ~ QMon%, CAlg% ~ CMon%, LAlg% ~ LMon§,

This theorem will be proved at the end of this section, because we need to collect
several lemmas before.

Remark 4.2.22. Given an R-scheme T we have a functor

QPMon® T x LRings® R —— QRings T
(Qv (A7 m)) _ (QA’ Qm ° L%,A)

The following lemma shows that the functor <% : QAdd® T — QRings® T is well
defined.

Lemma 4.2.23. If Q € QPMong then aq = Qpq) € QRings}Gz, i.e. the multiplication
o Q oo — o is G-equivariant.
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Proof. Set A=R[G] , A=Ag: A— A®R[G] and m = mg: A® A — A. We claim
that the diagrams in
LA, Qm
Q4@ O - Qaga ———— Qu

l QARQA l Qaga
LA®R[G],AQR[G]

Qasric) © Laer(c) QasRiGI9ARR(G)
| ! fa
04 ® Q4 ® RG] ® R[G Qe A8 RIGI®RIG)

\inj@id / lQ
id®mG

Qm i
id@mg Qapa ® R[G] ® R[G] QuzazR(c) —e, Qazriq)

id®ma J / |

Qm®id
04 ® 24 ® RG] » Qaoa ® RG] - 24 RG]
;AL

LA

are commutative. Note that the outer diagram is the one required for the G-equivariancy
of the multiplication Q4 ® 24 — Q4. The pentagonal diagram is commutative thanks
to 4.2.19. The only non trivially commutative diagram left is the upper right rectangle.
This is commutative because it is obtained applying €2 to the diagram

A9 A2 A®R[G]® A® R[G], A® A® R[G] @ R[G]
lm lm@mc
A 2 A® R[G]
which is commutative since A is a map of rings. O

We have now to deal with how the properties of being commutative, associative or
having a unity translate in the context of functors.

Remark 4.2.24. If Q@ € QPMon® T and V, W € Loc® R we have a commutative diagram

0y 20
Ve, oW ey ——— Qpia] © Qpigl
l Ovew Jm
VoW e Quew yrite)

where 6, are the evaluation maps defined in 4.2.13 and m is the multiplication.

Remark 4.2.25. Given an R-scheme T', the natural isomorphisms (see 4.1.1)
V& Or ~ (Ve Or[G))¢ ~ Hom®(VY, O7[G]) for V € Loc® R

are monoidal.
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The following lemmas show that the functors <7 and Q* are well defined on QMonG T
and QAIlg® T respectively.

Lemma 4.2.26. Let Q € QPMon® T, set o = Qp(q) with multiplication m and let
V,W,Z € Loc® R. Using notations from 4.2.13, the commutativity of the diagram 1)
(resp. 2)) in definition 4.2.15 implies the commutativity between x,y (resp. associativity
among x,y,z) for sections x € Imby, y € ImOy (resp. and z € ImOz). In particular
if Q0 is symmetric (associative) then ofq is commutative (associative). The converses to
the previous statements hold if §2 is left exact.

Proof. Denote by vy : Qy@Qy — Qygw the monoidal structure on €2 and by ex: A®
B — B ® A the exchange map. Let v € Qy, w € Qu, z € Qz and set also

§=wwezlv®wz(w®z)), ¢=wewzlvw@w)® z)
n = Qex(tvw (v @w)), p=1wy(wev)
faecVV,BeWY, ve ZV set
z =0y (v®a)(fw(wep)i(z©7)), y=(Ov(ve a)iw(we )z 7)
a=0y(v®a)ly(wep), b==0w(we L)y (ve o)
Thanks to 4.2.24, we see that
z=0vewez(®a®@B®Y), y=0O0vewez((®a® B® ")

a=0wev(n®pLRa), b=0wev(p® L a)

The commutativity of the diagrams 1) and 2) coincide with the equalities n = p and
& = ( for any v, w, z respectively, which imply the equalities a = b and x = y for any
v,w, z,, 3,7. So the first claim holds. For the converse, it is enough to show that if
U € Loc® R and u € Qp then

Oy(u®d) =0V € UY = u=0

But this is the injectivity of the induced map Q2 — Qg ®@U, which comes from 4.2.13
since (2 if left exact.
For the last claims, it is enough to note that 0 is surjective. Indeed taking the

element ¢ € R[G]" corresponding to id R[q] € End“ R[G] we have
HR[G](x X ¢) =X fOI‘ T € QR[G]
thanks to 4.2.13. O

Lemma 4.2.27. If Q € QPMon% T, then the natural transformation Q —s Q7 defined
i 4.2.18 is monoidal.
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Proof. Set T' = Q“2. The monoidality of the map 2 — I is expressed by the equalities
of the two maps

Qv Qw — T'yv @T'w — Tvew, Qv @ Qw — Qvew — T'vew

for any V,W € Loc® R. Since — ® U: Loc® R —» Loc® R is an exact functor for
any U € Loc® R, by 4.2.12 we have only to check that the above maps coincide when
V = W = R|[G]. In this case, by applying © and thanks to 4.2.19, we reduce to the
problem of the commutativity of the following diagram

AAS U AvAnA~ An Ao A A Ao dAe A
lw . Jid@w
A®A Ag®id A®A®A

where A = R[G] and w: A® A —s A® A is the tensor product of Ag and id ® 1. But
the commutativity of such diagram can be checked directly taking spectra and using the
functorial point of view. O

Lemma 4.2.28. Let Q@ € QPMon® T and 1 € Qr. If 1 is a unity for Q then it is also a
unity for Qr(g). The converse holds is §) is left exact.

Proof. If 1 is a unity for 2 we will have a commutative diagram

1id R QR — QreR(@)
Qrie) l l Y]
QRria) @ Qrig] = QR[GI0R(G]

and so 1 is a left unity for Qgjg). Similarly it is also a right unity. Conversely, if Q is

left exact, the result follows easily because the isomorphism Qy ~ HomG(VV, Q R[G]) is
monoidal thanks to 4.2.27. ]

We are finally ready to prove Theorem 4.2.21.

Proof. (of Theorem 4.2.21) The functors of 4.2.4 are well defined over QRings® T and
QPMon® T thanks to 4.2.23. We claim that they are well defined also over QAlg® T and
QMon® T. For the unities, using their uniqueness, it is enough to apply 4.2.28 and note
that the natural transformation @ — Q%2 over R € Loc® R is just Q applied to the
inclusion R — R[G]. Associativity and commutativity instead come from 4.2.26.

The natural transformation Q — Q2 is the one defined in 4.2.13, which is monoidal
thanks to 4.2.27. It remains to prove that if &7 € QRings® T then the comodule map
o — Q'g[G] = (& ® R[G])® is a map of rings. But the commutative diagram expressing
this fact is exactly the diagram expressing the G-equivariance of the multiplication &/ ®
o/ — of | since, by construction, the ring structure on (&7 ® R[G]) is the one as subring
of & ® R[G]. O
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4.2.3 Ramified Galois covers and the forgetful functor.

We have seen that a quasi-coherent sheaf of (commutative, associative and with unity)
algebras, or, equivalently, an affine map, with an action of G corresponds to a monoidal
functor. In this subsection we want to describe the functors associated with G-covers.
The theorem we want to prove is the following.

Theorem 4.2.29. The map of stacks

G-Cov LMong
x-Lr o afox

is well defined and yields an isomorphism between G-Cov and the substack in groupoids
of LMong of functors Q that, in LAAG, are fppf locally isomorphic to the forgetful
functor. When G is a glrg over a connected scheme, this is also the substack in groupoids
of Q € LMong such that rk Qy = rk'V' for all the representations V € Iq.

Remark 4.2.30. In general it is not true that, if & € LAlg%T is such that rk Q‘{“f
tkV for all V € Loc® R, then & € G-Cov(T), even for linearly reductive groups.
counterexample with G = Z/3Z, R = Q and T = Speck, where k = Q, is &/
k[z,y]/(x,y)? with the action of u3 ~ G x k given by graduation degz = degy = 1
Z/37Z. Denote by k; the irreducible ps-representation over k induced by i € Z/3Z
Hom(us, G,,). Note that Z/37Z has only one non trivial irreducible representation W
over Q and it satisfies W ® k = ki @ ky. Therefore Z/3Z is not a glrg. The functor
0: Loct3 k — Lock associated with &/ € LAlg!s k is simply given by oy, = k, 0, =
k%, 6k, = 0. In particular &/ ¢ G-Cov(k) by 4.2.29. On the other hand, since G-
representations over () decompose into irreducible representations, it is easy to check that
Q7 Loc® Q —» Lock, which is nothing else that Q"Q/{ = dy gk, satisfies rk Q"‘}{ =rkV
for all V € Loc® Q.

Remark 4.2.31. Thanks to 4.1.1, the functor QOT[¢] ¢ QAdd® T associated with the
regular representation is just the forgetful functor

m 1=

Loc¢ RV — V@O € LocT

Proof. (of Theorem 4.2.29) We will make use of 4.2.21. Let X Tire G-Cov(T') and
set & = f,Ox € LAIgE T. Since Q076G is the forgetful functor and taking invariants
behaves well under flat base changes, we have that Q7 : Loc® R — QCohT is fppf
locally the forgetful functor. In particular Q7 is exact and Q“ € LMon® T, that is QO
has image in LocT. If T’ T any base change, then h* o Q7 is still exact because
exact sequences in LocT split locally, and therefore

h* o Q7 ~ Qh*Q%G] ~ QO

So the map in the statement is well defined and the first equivalence is clear from 4.2.4.
Assume now that G is a glrg. We have to show that 2 € LAddg is locally the forgetful
functor if and only if rk Qy, = rkV for all V' € I5. Thisis clear from 4.1.15 and 4.1.17. [
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4.2.4 Strong monoidal functors and G-torsors.

After the description of G-covers in terms of functors, it arises naturally the question of
what kind of functors correspond to G-torsors. We will show that the answer is strong
monoidal functors. Notice that, over a field, this is a classical result of the Tannakian
theory (see | , |). Moreover such a result has already been proved in | |,
as a particular case of a more general theory. In this subsection we want to give a more
elementary proof, based on the results obtained in the previous sections.

Notice also that the equivalence between G-torsors and strong monoidal functors, in
the diagonalizable case, is another well known result (see 3.2.3) and it does not require
the machinery developed here or the Tannakian theory.

Thanks to 4.2.25 and 4.2.31, we have a description of the trivial G-torsor:

Proposition 4.2.32. The functor associated with the trivial G-torsor Or|[G] is just the
forgetful functor
Loc? RSV +—V & Or € LocT

with the usual monoidal structure.
For general G-torsors we need the following definition.

Definition 4.2.33. Given an R-scheme define LSMon® T as the full subcategory of
LMon® T of objects Q that are left exact, strong monoidal, i.e. such that for any V, W &
Loc® R the map

L%W: Qv @ Qw — Qvew

is an isomorphism, and such that the map O — Qg is injective. Define also LSMong
as the full subcategory of LMong whose fibers over an R-scheme T are LSMon% T'.

Theorem 4.2.34. LSMon$, is a substack of LMon% and the functors
Spec QR[G] 0

BrG LSMon§,
x Lir——— (-2 f0x)°

are well defined and they are each other’s inverse.
We will prove Theorem above after the following lemma.

Lemma 4.2.35. Let Q € LMon® T be a strong monoidal functor. Then Qr = O and
Q) left exact <= Q eract <= Supp Qg =T

In particular LSMong s a substack of LMong.
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Proof. Since Qr R Qr ~ Qr and Or C Qp, we can conclude that rkQz = 1. But Q2 has
a structure of Op algebra induced by the multiplication R® R — R. So SpecQr — T
is a degree one cover, which is therefore an isomorphism.

For the equivalences, consider a short exact sequence in Loc® R

V: 0—V —wV —5V"—0

Since there exists a natural isomorphism U ® R[G] ~ U @ R[G] for U € Loc% R (see
| , Part I, Example 3.7]), we see that V, ® R[G] is a splitting sequence in Loc® R. In
particular 2y, g pgq is exact. Moreover Qy, g = Qv, ® Qrjg). If Supp Qrjg) =T, the
functor — ® Qg is faithful exact since Qg is locally free, and therefore ) is exact.
Conversely, if € is left exact we have Or = Qg C Qp(q-

For the final statement, we have to show that the subcategory LSMon% C LMon% is
preserved by the pullback. This follows because 2z = O7 and the pullback of an exact
sequence of locally free of finite rank sheaves is still exact. O

Proof. (of Theorem 4.2.34) LSMon$ is a substack of LMon% thanks to 4.2.35. Since
G is flat, finite and of finite presentation, the push forward functor B G — LAlgg
is fully faithful with essential image the full subcategory of algebras 7 for which there
exist G-equivariant isomorphisms of algebras o/ ~ O[G] locally in the fppf topology.
In what follows we identify Br G with this stack. Since taking invariants commutes
with flat base change, given &/ € Br G(T), Q7 is locally isomorphic to the forgetful
functor Loc® R —» Loc T, which is strong monoidal and left exact. Thanks to 4.2.21,
Q: BRG — LSMon% is fully faithful and we have only to prove that, if Q € LSMon® T,
then Qg € BRG(T). Note that f: SpecQprg — T is faithfully flat and finitely
presented since {2g(q) is locally free and Or C Qpgjg. So it clearly has sections in the
fppf topology. We therefore need to show that the map

p: Qpie) @ Qrig) — Qrig) ® R[G] given by p(z @ y) = p(z)(y @ 1)

is an isomorphism, where i is the comodule structure on Qg(g. Set A = R[G] and
consider the map

Ac®(ida®1)
— %

w:A® A (ARA)RARA ~ A AR AR A -TA%M4, 4w A

where m 4 is the multiplication. The map w is a G-equivariant isomorphism because it
corresponds to G x G 3 (g,h) — (gh, g) € G x G. Moreover it is easy to check that we
have a commutative diagram

PR Y —— Q4 ® R[G]
! N K

Qaga ———— QagR(q)

Since € is strong monoidal we get the result.
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4.2.5 Super solvable groups and G-torsors.

Where G is a diagonalizable group and Q € LMon® we know that © corresponds to a
G-torsor if and only if the maps

Q@ QU — Qe Vmyn € Hom(G, G,,)

are isomorphisms and Q¢ = O. Here ), = Qy; , where V,, is the one dimensional
representation associated to m € Hom(G, G,,). On the other hand this condition is also
equivalent to require that Qg = O and that the maps

Qn@Q_yy — Q=0 VYm € Hom(G, G,,)

are surjective (and therefore isomorphisms). We want to generalize this kind of statement
for a larger class of groups, namely super solvable groups (see 4.2.36 for the definition).

In this section we will assume that G is a glrg and we continue to work on a base ring
R.

Definition 4.2.36. We will say that a group scheme G over an algebraically closed field
is super solvable if there exists a filtration by closed subgroups

l1=Hy<Hi<---<H,.=G

such that H; «G and H;y1/H; ~ i, for some prime p and for all .
A finite, flat and finitely presented group scheme G over a base S will be called super
solvable if it is so over any geometric point.

Remark 4.2.37. In our hypothesis, if G is constant over an algebraically closed field k,
then it is super solvable according to the above definition if and only if it is so as abstract
group. Indeed, since G is linearly reductive, we will have chark { |G|, and pq, ~ Z/qZ if
chark 1 q.

Remark 4.2.38. Assume that R is strictly Henselian. If H is an open and closed nor-
mal subgroup of G which is diagonalizable, then the conjugacy yields an action of
G/H on Hom(H,G,,). In particular if H = G we get an action of G on the group
M =Hom(G1,G,,). Indeed G acts by conjugacy on H and, since H is abelian, it induces
an action of G/H = G/H on H and therefore on Hom(H, G,,).

Notation 4.2.39. In the situation of remark 4.2.38 we will consider Hom(H, G,,) and, in
particular, Hom(G1, G,,), endowed by the left action of G defined above.

The following remark gives a concrete description of what a super solvable group is
over an algebraically closed field.

Remark 4.2.40. Assume that R = k is an algebraically closed field. Then G is super
solvable if and only if G is super solvable and there exists a filtration by subgroups

0=Hy< H) <---< H, =M =Hom(G1,G,,)

such that each H; is G-stable and H;;1/H; is cyclic of prime order.
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Notation 4.2.41. Given a group G over a scheme S and a character x € Hom(G, G,,) we
will denote by V), the representation of G on Og induced by such character.
Given 7 € CAlg® T and a representation V € I we set

Wil QO @ O — Qv — QF = 7C
We will also write simply wy instead of wﬁ? if this will not lead to confusion.

Theorem 4.2.42. Let G be a super solvable glrg and let o7 € LAIgE T. Then o € BG
if and only if /¢ = QI’{ ~ Or and for any representation V € Ig the map

wil O @ O — Qv — QF ~ Or
18 surjective.
Before proving the above Theorem, we need some preliminary results.

Lemma 4.2.43. Let G be a constant super solvable group, H be a subgroup and k be
an algebraically closed field such that chark { |G|. If VH # 0 for all the irreducible
representations V of G over k then H = 0.

Proof. We will argue by induction on |G|. If G = 0 there is nothing to prove. So assume
G # 0. If K # 0 is a normal subgroup of G and ¢: G — G/K is the projection, then
¢(H) < G/K satisfies the inductive hypothesis and therefore ¢(H) =0, i.e. H C K. In
particular we can choose K to be cyclic since G is super solvable and we can conclude
that H is normal and abelian in G. Let W be an irreducible H-representation. Given a
system R of representatives of G/H we can write

Ry indG W = P W,
geER

where W, is the representation of H given by W and the action h x x = ghg~'z. By
hypothesis, we know that (indfl WHYH #£ 0. So there exist ¢ € R, x € W, such that
h*x = ghg~'xz = x for any h € H. Since H is normal we can conclude that W # 0.
So H has only the trivial representation and therefore H = 0. ]

Lemma 4.2.44. Let M be an abelian p-group, for a prime p, and G be a constant group
acting on M. Assume that there exists a filtration

O0=Hy<Hi < ---<H, =M

by G-stable subgroup such that Hi11/H; ~ 7Z/pZ. Then for any proper subgroup H of M
there exists a G-orbit in M — H.

Proof. We can assume that H has index p. In particular pM C H. The action of G
on M induces an action of G on M/pM that has a filtration like the one of M. Since
H/pM is a proper subgroup of M/pM we can assume that pM = 0, i.e. M is a finite F),
vector space. Choosing a basis ey, ..., e, according to the given filtration, we can assume
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that G acts by triangular matrices. Let H be a subspace of M and assume that any
G-orbit has an element in H. We have to prove that H = M. Set ¢y = 0 and assume by
induction that e, ...,e;—1 € H for j <n. We have that Ge; N H # (). Since G acts by
triangular matrices we can write

H > g(ej) = Xej +x with A € F, x €<eq,...,ej-1 >, C H
So Aej € H and ej € H. O
In what follows G is still our glrg over the base ring R.
Lemma 4.2.45. IfV € Ig then 1k V € R*.

Proof. Consider W = Hom(V, V) and note that, by 4.1.11, we have W& = R-idy. Since
G is a glrg, there exists a G-equivariant map ¢: W — R such that ¢(idy) = 1. On the
other hand any G-equivariant map V ® VV — R is of the form ey for A € R, where
ey is the evaluation ey (v ® ¥) = ¢ (v). If r =rkV it is easy to check that ey (idy) = r.
So 1 = dey(idy) = Ar. O

Lemma 4.2.46. Let o7 € LAIgC T and V € Ig;. Then

w0y (6@ 2y 0 23) = Lz )

where ¢ € VY0 € V,x € O .y € Q% 0_: (=)’ @ Hom((—)", o) — o is the evalu-
ation and 7: o/ — /€ is the projection according to the G-equivariant decomposition

of o .
Proof. For any W € Loc® R, the map
WY@ Qw =WY @Hom WY, o) — o — ¢

is non zero only on the factor (WG)V ® Qya. Let W = VY ®V and remember that,
by 4.1.11, we have W& = Ridy. Under the isomorphism W ~ WV, idy is sent to the
evaluation ey : VV®@V — R, while ¢®uv to the map 1 given by ¢(d®2) = 6(v)¢p(z). The

equivariant section of R 1o v given by (¢ — ¢(idy)/ 1k V') so the component

of 1 in (W)Y is
ev(idy)/tkV =eyop(v)/rkV

By definition wy (x ® y) = x ® y(ey) and taking into account 4.2.24 we have

m(0y (¢ @ 2)0yv (v ®Y)) =z @ ylev)p(v)/tkV = wy(z @ y)d(v)/ Tk V
O

During the proof of Theorem 4.2.42, we will reduce to consider local algebras. The
following lemma explains what happens in this situation.
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Lemma 4.2.47. Assume that R is strictly Henselian and let A € CAlg® R be a local
R-algebra such that A = R. Then

e If G = G then the mazimal ideal of A is

mr® P VVeoy
RAVelq

and for any R#V € Ig the map w{} s mot surjective.
o If G =G, then
H={meM| (V,"® Q{}m) NA* 40} ={me M | wy,, is surjective}

is a subgroup of M, and the subalgebra B = ®men Vi’ @ Qv C A is a D(H)-
torsor.

Proof. Set Q@ = Q4 w=w? and k = R/mp. Assume G = G and let my4 be the maximal
ideal of A. Since m4 is stable under the action of G, it can be written as

ma = @ vV RI'y
Velag

where I'yy C Qy . In particular

L=A/ma= P Ve (Qv/Ty)
Velag

G acts on L and LE = Qgr/T'p = k. Therefore L/k is separable, i.e. L = k and by
dimension we get the first equality. Taking into account 4.2.46 we also have that if
R #V € Ig then wy is not surjective.

Now assume G' = G = D(M) and set ,,, = V;,,Y ®Qy,,. Note that if Q,®Q_,,, — R
is surjective then Q,,NA* # @ since R is local. Conversely if z € Q,,NA* let A = zMl € R.
If A\ € mp then € my, which is not the case. Since z/MI=1 € Q_,, and therefore
wm(z® x'M‘_l) = zM| ¢ R* we have that w,, is surjective. Finally if z € Q,, N A* and
y € Q, N A* then zy € Q4 N A*. So H is a subgroup and B is a D(H)-torsor thanks
to 3.2.3. O

The following two lemmas describe how the associated functors 2* change when making
an induction or taking invariants.

Lemma 4.2.48. Let H be a subgroup scheme of G and assume they are both glrg. If
o € CAlg' T, then

. of
ind% o ~ (Z/®R[G))H € CAlg® T and Q%Y — 7Ry LocC R o TocH R 275 FCoh T
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Proof. We have

e
QP17 — Hom%(VY,ind§ &) ~ Hom™ (Ry V), o) = QF, v
.G
So indf 7 € CAIg® T and it is a subring Qe ~ (o @ RG] C o @ R[G]. O

Lemma 4.2.49. Let K be a normal subgroup scheme of G and o/ € CAlg®T. Then
K € CAlg®/K T and its associated functor is

LocG/K g restriction, v .G B 27, FCoh T

Proof. Note that if F': (Sch/R)®P — (Sets) is a functor with an action of G, then FX
is stable under the action of G' and therefore the map G — Aut FX factors through
G/K — AwtFE. So &% € CAlgET and #X € CAlg®/KT. Now note that if
V € Loc®/% R then

Hom®(Rg V, /) ~ Hom®(Rg V, #%) = Hom® (R V, R &%)
since K acts trivially on RgV. So we have to prove that the natural map
Hom /X (V,W)— Hom®(RaV,ReW) for V € Loc®/ KT, W € QCoh®/K T

is an isomorphism. In order to do that, note that Hom(Rg V,Rg W) = Rg Hom(V, W)
and that in general (Rg U)% = US/K for all G/K-modules U. O]

Lemma 4.2.50. Let R’ be a local R-algebra, H be a subgroup scheme of G with a good
representation theory and B € CAlgH R'. If we set of = indg B and we take V € Loc® R
then

w surjective <= 3A € Iy s.t. Hom™ (A, V) #0 and w¥ is surjective

Proof. Let Q = Q7 and § = Q7. By 4.2.48, we know that = § o Ry. Denote by ¢, °
the natural transformations that define the monoidal structures of 2 and § respectively.
Let V € Ig. If we set Va = Hom™ (A, V) for A € Loc R we have

V ~ @ VA®A and VV ~ @ VavYy ® A
AEIH AEIH

The map LS‘}—VV s Qy @ Qyv — Qygyv factors through

id® ) yv: VaY @ Vi ® 64 ®6pv — Va¥ @ Vi ® dagav

Now call ey : W @ WY — R the evaluation map for any R-module W. The map ey
sends any (Va ® A) @ (VA ® A)Y with A # A to 0 and restricts to

ey, ®ea

(VA®A) @ (VARA)Y VA VAV A®AY R
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So the composition w'{f =, 0 L%V\/ Qy@Qyy — Ris0on VAV ® V) ® da @ v if
A#£A isey ® wf if A = A. In particular

)= Y )
A | VaA#0

Since R’ is local we get the required result. O
Lemma 4.2.51. Let H be a subgroup scheme of G and % € LAIg” T. Then
ind ZcBG «— #cBH

Proof. If # € BH it is enough to note that ind% O[H] ~ O[G]. So assume & =
ind%%’ € BG. Since # is locally free, the condition of being a H-torsor is open,
and we can assume R = k and T = Spec R, where k is an algebraically closed field.
If § = Q7 from 4.2.48, we know that Q7 = § o Ry. By 4.2.34, we have to prove
that for any V,W € Loc! k the map i€/7W: oy ®@ 0w — dygw is an isomorphism.
Note that if V = Vi @ V5 in Loc k, then L“5/7W is an isomorphism if and only if LQ/MW
and L(‘;/%W are so. Therefore we must find a H-representation V', containing all the
irreducible representations of H and such that Lis/yv is an isomorphism. I claim that
V' = Rp k[G] satisfies the request. Indeed L(‘S/,V is an isomorphism since &/ is a G-

torsor and Q9 = § o Ry. Moreover, since we have a H-equivariant surjective map
Ry k[G] — k[H], we have that any irreducible representation of H is a quotient and
therefore a subrepresentation of Ry R[G]. O

Lemma 4.2.52. Assume that R is strictly Henselian. Let also H be an open and closed
normal subgroup of G which is diagonalizable. Then, if m € Hom(H,G,,) we have a
H -equivariant isomorphism

9eG/H

where the action of G/H on Hom(H,G,,) is the one given in 4.2.38. Moreover ind$, V, ~
ind$ V,, if and only if there exists g € G/H such that g(m) = n.

Proof. Set O, = W(V,;,). By 4.1.28, we have a decomposition of G into H-torsors

In particular we have

ind§ Op, = Hom" (G, 0,,) ~ [ Hom™(H',0,,)
i€G/H

Since H' is a H-torsor for all i, we see that U; = Hom™ (H?,0,,) is an invertible sheaf
on R and therefore U; ~ W(R). Now consider the right action of G on itself given by the
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multiplication. Each H® is H invariant since H is normal, so the above decomposition is
H-equivariant. In particular U; ~ O,, for some n € Hom(H,G,,). In order to compute
n, we can assume that R = k is an algebraically closed field, so that H* = Hi, where we
think of 7 as an element of H*(k). Given f: Hi — O,, € Hom" (Hi,0,,) and h € H
we have

(b £)(t) = m(t) f(ih) = m(t) f(ihi™"5) = m(ihi™ ") f(ti) —> hx f =i (m)(h)f

and therefore that n = i~1(m).

For the last claim, a G-equivariant isomorphism between ind$ V;, and ind% V, is also
H-equivariant and therefore g(m) = n for some g € G/H. Conversely note that two
representations of G are isomorphic if and only if they are so on the algebraic closure of
the residue field of R, because the restriction I — I, is an isomorphism by hypothesis
and R is local. So we can again assume R = k algebraically closed. Given g € G(k) ~ G,
we claim that

Y: indf Op, = Hom" (G, Opn) — Hom" (G, Oy(yny) = indfj On, 9 (f)(u) = fg™"u)
is G-equivariant isomorphism. It is well defined since

() (hu) = f(g~ hu) = f(g7 hgg™ u) = m(g~ hg) f (g~ u) = g(m)(h)Y(f)(u)

It is G-equivariant since

Proof. (of theorem 4.2.42) If &/ € BG then, by 4.2.34, all the maps wy are surjective
since Qygyv — Qg is surjective. Conversely, since both conditions in the statement
are open conditions, we can assume that 7" = Spec R, that R = k is an algebraically
closed field and replace &/ by a finite k-algebra A. By 4.1.34, we can write A ~ ind% Ap
where p is a closed point of Spec A and H is the stabilizer of Spec A,. In particular
A, € LAlg k and therefore comes from a functor §: Loc k& — Vect, € LMon’ k.
We want to prove first that H = G;. We set Va = Hom(A,V) for V € Loc” R and
A € Loc R. We will use 4.2.43 showing that for any V & I we have VEH £ 0, so that
H = 1. By 4.2.50, since wé is surjective, there exists A € Ip such that Vo # 0 and
wﬁp is surjective. We will show that A = R. Since RgRgV = RgRgV, we have that
Va=0if A€ Iy —1Ig. So A€ Ig. Since A, is local, we have that Agl e LAl R is
G
local thanks to 4.1.29. From 4.2.49 and 4.2.47 follows that if A € Iy then wf”l = wf”
G

and that wfpl = 0if A # R. Since wﬁp # 0 and A € Iy we can conclude that A = R
and therefore Va = V1 = VE £ 0, as required.

We want now to prove that A, is a G; = D(M)-torsor. By 4.2.47, the set Q = {m €

M | wy,, is surjective} is a subgroup of M and, if we prove that @ = M, we will have
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that A, is a G1-torsor and therefore that A is a G-torsor. We will use 4.2.44 and 4.2.52.
Given m € M we have shown that there must exist n € N such that

Vi € Ry indg1 Vin = @ Vy(m) and wy,, is surjective
geG

So given m € M there exists ¢ € G such that g(m) € @ and therefore Q = M as
required. ]

Remark 4.2.53. We want to show now an example of a constant solvable group and of a
group G such that G is super solvable for which 4.2.42 does not apply.
Let k be an algebraically closed field and set

G= (,LLQ X /,62) X Z/SZ
where the action of Z/37Z on Aut(us x p2) ~ Awt(Z/27Z x Z/27) ~ GLyFy is given by

the order 3 matrix
0 1
a=(11)

If chark # 2, then G is constant and solvable, if chark = 2 then G = Z/3Z which is
super solvable.

Set K = (Z/27)? with Fy basis e; = (1,0), e = (0,1), H = D(K). Since Ae; = e,
A%e; = e + e, we see that Z/37 permutes the 3 subgroups of index 2 of K. We now
describe the irreducible representations of G. We claim that they are

U=indG Ve, k, Vy, Ve

where x: G — Z/3Z — k* is a non trivial character. We will make use of 4.2.52. If
V € Ig, there exists u € K such that

V Cind Vi, = Vi & Vay ® Vigzy

If two among Vi, Viay, V42, are isomorphic then u = Au = A?u and therefore v = 0. In
this case

indG Vo =k @V @ Ve
So assume u # 0. Since K — {0} is a Z/3Z-orbit, ind§ V., ~ ind% V., ~ ind% V., 1e,.
So we have to prove that U = ind% V,, is irreducible. If it is not so, it will contain
an irreducible representation of dimension 1 whose restriction to H is not trivial. So

there must exist a character n: G — Gy, such that 7y is not trivial. But if ( € H =
Hom(K, G,,), we denote by £ € G(k) the generator of Z/37Z and x = ( o A we have

A=A+id = &&= (e A =¢

So mi(¢) = n()n(x)n&)n(x) !t = 1.

We are ready to explain the counterexample to 4.2.42 for the above group G. Consider

B =k[z,y]/(z* —1,4%) € LAlg" k and A = ind§ B
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where the action of H on G is given by degz = e, degy = e2. We want to show that
w(} is surjective for any V € I5 but A is not a G-torsor. Taking into account 4.2.51, A
is not a G-torsor because B is not a H-torsor. Finally, taking into account 4.2.50, w{i‘v is
surjective for any V € Ig because Ry V' contains either the trivial representation k or

Ve, and wf, wg are surjective by construction of B.
€1

4.3 Reducibility of G-Cov for non abelian linearly reductive
groups.

We know that, when G is diagonalizable, except for some few cases of lower rank, G-Cov
is reducible (see 3.2.18). The goal of this section is to extend this bad behavior also to
all non abelian, linearly reductive groups GG. The method we will use does not apply and
does not reduce to the diagonalizable case. When G is a glrg over a connected base, we
will study the stacks in groupoids (LAlg%)gr and (LMong)gr and we will decompose them
in a disjoint union of stacks parametrized by functions Iz — N, called rank functions.
The stack G-Cov will correspond to the rank function fiy = rkV. The result about
reducibility of G-Cov is then obtained looking at the behaviour of the rank functions
under induction from a subgroup.
We start stating the Theorem we will prove at the end of this section.

Theorem 4.3.1. If G is a finite, non abelian and linearly reductive group then G-Cov
is reducible. If G is defined over a connected scheme, then G-Cov is also universally
reducible.

Remember that universally reducible means reducible after any base change (see 3.2.15).
Note that, if we do not assume that the base S is connected, we can not conclude that
G-Cov is universally reducible, since one can always take GG as disjoint union of uo and Ss
over Spec Q U Spec@Q. On the other hand what happens when the base is not connected
is clear from the following Proposition.

Proposition 4.3.2. If G is a linearly reductive group over a scheme S, then the locus
of S where G is abelian is open and closed in S.

Proof. Denote by Z this locus. Topologically, |Z| is closed in S, because it is the locus
where the maps G x G — G given by (g,h) — gh and (g,h) — hg coincide and
G is flat and proper. We have to prove that, given an algebraically closed field k and
a map Speck L5 5 such that Gy = G x k is abelian, there exists a fppf neighborhood
of S around p where G is abelian. By | , Theorem 2.19|, we can assume that
G = A x H, where A is diagonalizable and H is constant. If G is abelian, then H is
abelian, the map H — Aut A ~ Aut(Hom(A, G,,)) is trivial and therefore G ~ A x H
is abelian. O

From now on, except for the proof of Theorem 4.3.1, G will be a linearly reductive
group over a ring R with connected spectrum. It will be clear that this is not a necessary
condition, but we want to avoid technicalities like considering multivalued rank functions
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for a locally free sheaf. In particular any V € Loc% R has a well defined rank. As mention
above, one of the main ingredient in the proof of Theorem 4.3.1 is the theory of rank
functions, that we are going to introduce.

Definition 4.3.3. Assume that G is a glrg. We will say that Q € LAddg (o € Locg)
has equivariant constant rank (or is of equivariant constant rank) if for any V € Loc® R
the locally free sheaf Qy (Q = (V ® «/)%) has constant rank.

Given &/ € Loc% or Q € LAdd$ of equivariant constant rank we define the rank
functions k' : Io — N, 1k: Iz — N as

rk$ = rk Qy, 1k = rk%d =1k(V @ o)°

Given f: I — N we will denote by Locg’f, LRings%f, LAlg%f, LAddg’f, LPMong’f,
LMon§ ; the full substack of Locf;, LRings%, LAlg%, LAddf, LPMonf, LMon{ of objects
x of equivariant constant rank such that rkX = f respectively.

Given f: I¢ — N we will still call f the extension f: Loc® R —s N given by

fu= Z rk(Hom%(V, U)) fvr

Velg
In particular if Q € LAdd%’f we will have rk Qy = fiy for any U € Loc® R.

Remark 4.3.4. Theorem 4.2.29 says that Q* induces an isomorphism G-Cov ~ (LMongyf)gr,
where f: I — N is the rank function given by fiy =rkV.

The following Theorem shows how LAlg% can be described in terms of the rank func-
tions.

Theorem 4.3.5. Assume that G is a glrg. Then
(LAIR)T = | | (LAIgE )"
feNlc
Given f: I — N, let § € LAddg’fR be the R-linear functor such that &y = RIV for

V € Ig and set
X = H MfoWJV@W’ @f = H @fv
VWelqg Velqg

Then we have a cartesian diagram

X Spec R

l s

(LPMon§, ;)" — (LAdd§ ;)9

where the vertical maps are @f-torsors. In particular

(LAddf ;)7 ~ B(GL;), (LPMon$ ;)9 ~ [X/GL;]

127



4 Equivariant affine maps and monoidality.

Moreover the map (LMon%f)gr — (LPMon%f)gr is an immersion. In particular all the
stacks Loc% £ LRings% £ LAlg%f, LAdd%f, LPMOD% £ LMongJ are algebraic stacks
of finite presentation over R.

Proof. The first claim holds since, given 2 € LMong T for some scheme T and V € Ig,
then 1k = rk Qy is constant on the connected components of T'.

Now let f € N/¢ and § € LAdd% 7 be the R-linear functor given by dy = RV which
exists thanks to 4.2.8. By 4.2.8, we clearly have that (LAdd%f)gr ~ B(GLf). Now
consider the forgetful map

(LPMon ;)& — (LAdd ;)® and Z = (LPMonf ;)¥ x . Add§; e Spec R

Z is the functor that associates to an R-scheme T all the possible pseudo monoidal
structures on & ® Op. By 4.2.20 we have that Z = X. Now we have to verify that
(Ll\/[on%f)gr — (LPMonch)gr is an immersion. First, note that this map is fully faith-
ful, because an object in LPMong has at most one unity and the isomorphisms must
preserve them. So Z = (LMon% 78 X (LPMong et X is a subfunctor of X, namely the
subfunctor of the pseudo-monoidal structures L,VW that satisfy commutativity, associa-
tivity and has a unity. We have to show that Z — X is a finitely presented immersion.
We first consider the associativity. Given V, W, Z and vy, € X (T') there are two way of
forming a map
Sy ®dw ®dz ® Or — dvewez

Taking the difference we get a map

g: X —Y = H Hom (v ® dw ® 0z, dvewsz)
VW2

By functoriality, this map is a morphism of scheme, so the locus of X of the ¢y that
are associative is ¢~1(0), which is a closed subscheme of X. Moreover, it is easy to see
that the map ¢ involves only a finite number of matrices defined over R. Therefore it is
defined over some noetherian subring of R. In particular the locus ¢~!(0) is defined by
a finite set of equations.

We can argue similarly for the commutativity. Now we have to deal with the unity.
We have to describe the locus of X of the vy, such that there exists € 0p ® T" such
that tp v (z ®@v) =v for any V € I, v € V. Consider the induced linear map

¢,: or® O — H End(5v) ®Q Or
vels
The unities of (6 ® O, ) are the elements z € dp ® Op such that (,(z) = (ids, )ver,-
Since we know that that the unities are unique, we can first impose the condition that ¢,
is injective after any base change. If we regard (, as a matrix over Op, this is the locus
where we have inverted the maximal minors of {,. We can now assume that there exists
a maximal minor of ¢, which is invertible over T'. This means that we can write

H End(dy) ® Or = Im(¢,) © F
Velg
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If (idy)ver, = 2z @ 2/, then the locus where a unity exists is exactly the zero locus of
2 eF. O

After having discussed the rank functions, we come back to our initial goal, the re-

ducibility of G-Cov.

Lemma 4.3.6. The stack G-Cov is open and closed in (LA]gg)gr. In particular Zg s
the schematic closure of BG in (LAl1g%)".

Proof. Follows from 4.1.21, 4.3.5 and 4.2.29. O
The following proposition is the key in the proof of the reducibility of G-Cov.

Proposition 4.3.7. Let H be an open and closed subgroup scheme of G. Then if & €
LAlgE | we have

indg Bec 25 «— BcZy, ndj BcBG — BcBH
In particular we have cartesian diagrams
BH —— Zy — H-Cov

l l l ind%

BG — Z2g — G-Cov

Proof. Consider the fiber products

y Z — (LAIg)®
l l lind%
BG —— Z¢ — (LAIg&)e

It easy to show that Z (J) is the substack of (LAlgH )2 of algebras % such that ind% & €
Z¢(BG). In particular by 4.2.51, Y = B H and Z is a closed subscheme of Z. We have
to prove that Zy = Z. We claim that, if S is a noetherian scheme and % € LAlgH (S)
then # € Zy(S) if and only if for any strictly Henselian ring C' and map SpecC' — S
we have Z® C € Zi(C). Indeed consider the base change S = S X (LAlgH e ZH — 5.
This is a closed immersion and by hypothesis its base change to any strict Henselization
of a localization of S is an isomorphism. But this implies that S’ = S and therefore

We are now going to prove that Z = Zp. This will conclude the proof since ind% sends
H-Cov to G-Cov, because ind% O[H] ~ O[G]. If S 2, Zis an fppf atlas, then this is
equivalent to & € Zy(S). By the remark above we have to show that if # € LAlgE C,
where C' is a strictly Henselian ring, such that A = ind% % € Z5(C) then & € Zy(C).
Note that if X — SpecC' is an fppf map we can always assume to have a section.
Indeed # € Zy(C) if and only if Z® Ox € Zy(X) and again we can restrict to the
strictly Henselian ring mapping to X. Let Z be an fppf atlas of Z45. By remark above
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we can assume that A comes from the atlas Z. Let p € Z the image of the closed point

of Spec C' under the map SpecC' A, Z and let D be the strict Henselization of Oz.p.
The universal object of Z induces an Ap € Z5(D) and since Spec D — Z is flat, the
open subset of Spec D where Ap is a G-torsor in schematically dense in Spec D. Since
Spec C — Z factors through D we have a map D — C such that Ap ® C' ~ A. By
hypothesis A = indg B and, since C' is strictly Henselian, by 4.1.36 we can assume B
to be local. If p € Spec Ap is the image of the closed point of Spec B under the map
Spec B — Spec A — Spec Ap by 4.1.36 we can write Ap ~ indgp(AD)p where H,
is the stabilizer of the connected component Spec(Ap), in Spec Ap. Let V' C Spec D
be the open locus where (Ap), is a Hp-torsor. This is exactly the locus where Ap is
a G-torsor thanks to 4.2.51. So V is schematically dense in Spec D. Since (Ap), ® C
is local by 4.1.23 and it is a factor of A ~ Ap ® C, Spec(Ap), ® C is the connected
component of Spec A containing Spec B. We are in the situation

[0

Spec B Spec(Ap), ® C

Jz‘ /ﬁ\ K

Spec A — Spec Ap ® C' — Spec indgp(@C(AD)p ®C

Since G' permutes the connected component of Spec Ap, we see that H, ® C is the
stabilizer of Spec(Ap), ® C' and therefore H C H, ® C. Since H is open and closed in
G, we have that B is a factor of A and therefore is a localization of A. It follows that «
is an isomorphism and, since i, j, 8 are H-equivariant, that is H-equivariant. So we have
a H-equivariant isomorphism B ~ (Ap), ® C. We are going to prove that H = H, ® C.
Since — ®p C' maintains the connected components of G, there exists an open and closed
subgroup H' C H), such that H' @ C'= H. In particular we have

(Ap)H' @ C =~ ((Ap), ® C)F =~ B ~ (ind§ B)® = A% = C

since A € Z¢(C). Since (AD)II){/ is a locally free algebra over D, it follows that (AD);;I, =
D. If g € V, ie. (Ap)p is a a Hp-torsor over ¢ € SpecD, then the base change
to k(q) of Spec(Ap), is H, and H,/H' ~ Speck(q). So H, and H’ has the same
connected components and therefore H, = H' and H, ® C = H. It remains to prove

that (Ap), € Zg,(D). We have cartesian diagrams

|4 Z Spec D
l l l(AD)p
BH, — Zg, - (LAIggp)gr

Since V is schematically dense in Spec D, it follows that Z = Spec D as required. O

Lemma 4.3.8. / | A constant group whose proper subgroups are abelian is solvable.
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We are ready for the proof of Theorem 4.3.1. The idea is that we can reduce to a
minimal non abelian subgroup of G and assume that it is constant. By lemma 4.3.8 G
is solvable. In this case we will find a subgroup H of G and an algebra </ € LAlgH k
such that o/ ¢ H-Cov(k) and ind% o/ € G-Cov(k). Up to some details, if G-Cov
is irreducible, then |G-Cov| = |Z¢| and therefore & € Zy(k) C H-Cov(k) by 4.3.7,
obtaining a contradiction.

Proof. (of Theorem 4.3.1) If the base scheme is not connected, then clearly G-Cov is
reducible. By 3.2.16 and 4.3.2, we can assume that S = Speck, where k is a field and,
since in this case Zg is geometrically integral, we can also assume k = k. In particular
G is a glrg. Let H be an open and closed subgroup of G. We claim that if one of the
following statement is fulfilled, then G-Cov is reducible:

1) H-Cov is reducible

2) there exists f: Iy — N whose extension f: LocH k — N is such that fRyv =
rk V for any V' € Ig and there exists A € Iy such that fa #rkA

Note that G-Cov is irreducible if and only if Z5(k) = G-Cov(k). Assume that H-Cov
is reducible and, by contradiction, that G-Cov is irreducible. If B € H-Cov(k) then
ind% B € G-Cov(k) = Zg(k) and so B € Zg (k). Therefore H-Cov is irreducible.

Now let f: Iy — N as in 2) and let § € LAdd? k be the unique R-linear functor such
that 6o = k72 for any A € Iy. Note that by hypothesis fzr = 1. Consider

F= @ A'®dén, B=koF
R#ANEIY

If we set F?2 = 0 we obtain a structure of algebra on B such that B € LAlggf k. We
claim that A = ind% B € G-Cov(k). Indeed QF = §, Q4 = QF o Ry and therefore

tkQff =1k Qf | = fr, v =1kV
We also claim that A ¢ Z¢(k), that implies that G-Cov is reducible. Indeed
A=ind} B € Z5(k) = B € Zg(k) = B € H-Cov(k)

by 4.3.7, which is not the case because there exists by hypothesis A € Iy such that
tk QF = fa #1kA.

We return now to the original statement. And we argue by induction on the rank of
G. As base case we take the case in which there exists a normal and abelian subgroup
H of G such that G/H ~ Z/pZ for some prime p. We first show how to reduce to this
case. Since G is non abelian, we have that G is a non trivial group. We start reducing
to the case where G is solvable. If G is abelian we are already in this case. Otherwise
take a minimal non abelian subgroup K of G. All the proper subgroups of K are abelian
and therefore K is solvable thanks to 4.3.8. If we call ¢: G — G, then G’ = ¢~ }(K) is
a non abelian open and closed subgroup of G such that G’ ~ K is solvable and we can
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therefore reduce to it. Now, if G is solvable, it has a surjective map G — Z/pZ. So
there exists an open and closed normal subgroup H of G such that G/H ~ Z/pZ. If H
is non abelian we can lower the rank and since H < G is solvable, we can continue the
induction reaching the claimed base case.

So assume to have a surjection G — Z/pZ for some prime p such that the kernel H is
abelian. In particular H is diagonalizable and set N = Hom(H, G,,). We will construct
an f: Iy — Nas in 2). The group G/H ~ Z/pZ acts on H and on N = Hom(H, G,,)
by conjugation as explained in 4.2.38. Let R be a set of representatives of N/(Z/pZ).
Note that, since p is prime, an element n € N is fixed or its orbit o(n) has order p. We
claim that if V' € I there exists a unique m € R such that

Ry V = V%V with |o(m)| =1 or V = ind% V;,, with |o(m)| = p

Indeed there exists m € N such that V C ind% Vim. Remember that, by 4.2.52, given
n,n’ € N we have

Ry ind Ve = €D V) and (ind§ V;, ~ indf Viy <= n' € o(n))
gEL/PL

So we can assume m € R. Moreover such an m is unique since if V' C ind% Vs
Ry V is the sum of some V, that are in the orbits of both m and m’. In particular, if
lo(m)| = 1, then ind% V;, = Vi and therefore Ry V = V&V, So assume |o(m)| = p.
Given W € Loc® k (LocH k) and g € G(k) call W, the representation of G' (H) that has
W as underlying vector space, while the action of G (H) is given by txz = (g~ 'tg)z. Note
that by definition (V;,)y = Vy(n)- In particular the multiplication by g ' on V yields a
G-equivariant isomorphism V' ~ V; and therefore V;, C Ry V implies that Vy,,) CRp V.
Since |o(m)| = p we can conclude that V = ind$ V;,. Define

o = lo(n)] ifneR
Vo = 0 otherwise

We claim that f satisfies the requests of 2). Indeed if V' € I and there exists m € R
such that V = VXV with |o(m)| = 1 then fr, v = tkV fy,, = rkV. Otherwise there
exists m € R with |o(m)| = p such that

V=ind% Vi = frgv= Y. fr,m =p=1kV
9€EZ/PZ

Finally note that if n € R is such that |o(n)| = p then fy;, =p # 1 =1k V,,. So we have
to show that such an n exists. If by contradiction this is false, then the actions of Z/pZ
on N and H, as well as the action of G on H by conjugation are trivial. So H commutes
with all the elements of G. Let g € G(k) ~ G be not in H. Any element of G(T') can
be written as hg' with h € H(T) and 0 < i < p. It is straightforward to check that two
such elements commute and that therefore GG is abelian, which is not the case. O
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4.4 Regularity in codimension 1.

In this section we want to address the following question: given a discrete valuation ring
R and A € LAIg® R, what are the conditions that ensure that A is regular? We will
see that one of those conditions will be that A € G-Cov(R). This problem translates
in the following, more geometrical problem: given a normal, noetherian scheme S and a
G-cover X — S, what are the conditions that ensure that X is normal too? The idea
is to look at the map tr: A —» AY induced by the trace map: fr is an isomorphism if
and only if A is étale and the less degenerate tr is, the more regular the algebra A should
be. We will explain what this ’less’ degenerate means. At the end, we will also discuss a
possible extension to covers without an action of a group.

In this section we fix a (étale) locally constant and finite group scheme G over a ring
R such that tk G € R*. This means exactly that G is a finite and étale linearly reductive
group over R. We require this last condition because we want G-torsors to be regular
(over regular base).

Notation 4.4.1. If P is a locally free sheaf and n: P® P — Or is a map, we will denote
by n: P — PV the associated map. If P is also an algebra and ¢ € PV we will also set
¢ = 1 where

nPoP 2P -2 0p

where m is the multiplication of P. Given a basis f = {z1,...,zs} of P, the matrix
associated with 7 is (n(x; ® x;)); j, which is also the matrix representing 7 with respect
to the basis # and its dual.

Definition 4.4.2. Let o € LAlg® T. We define
try 000 @ — Or and ‘&Q{/OT: o — o
the trace map and its associated map respectively. We also set
Q“/OT = Coker tr /o, and e?/O1 =1(Q7/Or)
where 1 is the length, and, if G is a glrg, ¢ = O and V € Loc® R,
Q‘{f/OT = Coker(Q{Z/{ v, (fov)v) and eff/OT = l(QJ{f/OT)

where &y is the map induced by wy: Qy @ Qv — Qugyv — Qr = ¢ = Op. We
will also omit the superscript */Op when it will be clear what is the base scheme.

Notation 4.4.3. If R is a local ring with residue field £ and @ is an R-module, we will
say that @) is defined over the closed point of R if mr(@ = 0. This condition is equivalent
to the fact that the map Q — @ ® k is an isomorphism or that Q = ,Q’, where
i: Speck — Spec R is the closed point, for some k-vector space @Q’.

The Theorem we will prove is the following:
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Theorem 4.4.4. Let R be a DVR and G be a finite and étale linearly reductive group
scheme over R. Let also A € LAIg® R be such that AS = R and that the action of G on
A is generically faithful over R (see 4.4.8). Then A is regular if and only if the geometric
stabilizers of A are solvable and one of the following conditions holds:

1) et <1k A;
2) Q4 is defined over the closed point of R.

In this case A is generically a G-torsor, A € Zg(R) and, given a closed point p of A, its
geometric stabilizer H,, is cyclic and we have

1

A_ B | — _
e” =1k A —|Spec(A®gr k)| =1k G(1 1rka)

If G is a glrg, then conditions 1) and 2) can be replaced respectively by
3) e{} <1kV forallV € Ig;
4) Qi is defined over the closed point of R for all V € Ig.

We will define what a faithful action and a geometric stabilizer means in this context.
The proof of the above Theorem is at the end of the section, because we prefer to collect
first the necessary lemmas and definitions. Anyway, before doing so, we want to state a
global version of Theorem above.

Definition 4.4.5. Let S be a scheme, Y be an S-scheme and f: X — Y be a cover.
We define the section sy € (det fOx)~? as the section induced by the determinant of
the trace map

try0y 0y f+Ox — f:0x"
If G acts on X and f is G-invariant set Qé = (f.Ox ® V)¢ for V € Loc“ S. Moreover
if G is a glrg over S and f € G-Cov then, for any V € Ig, since rkV = rk Q{/, we define
spyv € det(Q{/)_1 ® det(Q{,v)_l as the section induced by the determinant of
Y
of, — ol = ol eal, —al . — 9 =(£0x) =0y

The following Proposition, proved in 4.4.14, explains the relations among the sections
just introduced.

Proposition 4.4.6. Assume that G is a glrg over S and let Y be an S-scheme and
f: X — Y € G-Cov. Then there exists an isomorphism

(det £,0x) 2~ X (det () @ det(],)) ")™Y such that sp — (R) s7iFY
Velg Velg

Given a regular in codimension 1 scheme Y and a codimension 1 point g of Y we
denote by v, the discrete valuation associated with Oy,.
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Theorem 4.4.7. Let S be a scheme and G be a finite and étale linearly reductive group
over S. Let also'Y be an integral, noetherian and regular in codimension 1 (resp. normal)
S-scheme and f: X — Y be a cover with a generically faithful action of G on X such
that f is G-invariant and X/G =Y. Then the following are equivalent:

1) X is regular in codimension 1 (resp. normal);

2) the geometric stabilizers of the codimension 1 points of X are solvable and for all
q € YU we have vy(sy) < 1k G.

In this case f is generically a G-torsor, X € Zg(Y') and the stabilizers of the codimension
1 points of X are cyclic. Moreover if G is a glrg over S the above conditions are also
equivalent to

3) the geometric stabilizers of the codimension 1 points of X are solvable, f € G-Cov
and for allg e Y and V € I we have vg(spy) <tk V.

Note that the geometric stabilizers are automatically solvable if G has this property.
We will show how to obtain the above theorem as corollary of Theorem 4.4.4 as soon as
we have introduced the definitions of faithful action and geometric stabilizer for an étale
group scheme.

Definition 4.4.8. By a faithful action of a group scheme G on a scheme X we mean an
action such that the associated morphism of functors G — Aut X is injective. When
both G and X are defined over a scheme S, we will say that the action of G on X is
generically faithful over S if it is faithful over a dense open subset of S. We will often
omit to specify the base scheme S when it will be clear from the context.

Remark 4.4.9. If G and X are covers of a scheme S, then the locus in S where G acts
faithfully on X is open. Moreover, if G is constant and S is integral then the action of
G on X is generically faithful if and only if the map of sets G — Aut X is injective.
Indeed, if f: X — S is the structure morphism, Aut X is a locally closed subscheme of
the vector bundle Endg(f.Ox). In particular the kernel H of the map G — Aut X is a
closed subscheme of G, so that H — S is a finite group scheme. In particular the locus
where the zero section S — H is an isomorphism, which is open, is the locus where G
acts faithfully on X. When G is constant, S is integral and we write X = Spec &/ and
k(S) for the field of fractions of S, the action is generically faithful over S if and only if
G xk(S) — Aut(o/ ®k(S)) is injective, which is equivalent to the injectivity of the map
of sets G — Aut(« ® k(S)), because the maps Aut(«Z ® k(S)) — Aut(«/ ® Op) are
injective for all k(S)-schemes U. Finally, since Aut.&/ — Aut(«/ ® k(S)) is injective,
we can also conclude that G — Aut o/ is injective if and only if G — Aut(« ® k(S5))
is so.

Lemma 4.4.10. Assume that R is reduced and let A € LAIg® R. Then A is generically
a G-torsor if and only if it is generically étale, the action of G is generically faithful and
A = R. In this case tk A = |G| and the action of G is faithful.
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Proof. Assume that A is generically a G-torsor. Since G is étale it is generically étale.
Moreover, since R is reduced and thanks to 4.3.6, we have A € Z5(R) C G-Cov(R)
and therefore A9 = R. To prove the faithfulness, we can assume that A is the regular
representation, since the injectivity of G — Aut X, where X = Spec A4, is an fppf local
condition. The result then follows from the fact that for the regular representation the
map G — Autp W(R[G]) is injective.

For the converse we can reduce to the case where R is an algebraically closed field by
looking at the generic points. In particular G is constant and the claim is a classical
result in the theory of étale Galois covers. O

We now introduce the concept of geometric stabilizer of a point.

Definition 4.4.11. Let & € LAlgg T such that &/¢ = Op and p € Spec.«/. We define
the geometric stabilizer H), of p as
Hy ={g € Gy | 9(P) = P}

where p € Spec & ® k(p) is the point given by &7 ®o,. k(p) — k(p) ®o, k(p) — k(p).

Proposition 4.4.12. The geometric stabilizer is invariant by base change, i.e. if we
have a cartesian diagram
p—p
Spec &/’ — Spec &/

! !

T T

then H,y ~ H, under the map Gm — G@. Moreover if G is constant then the image

of H, under the map G@ — G 1s

{g € G | g(p) = p and the induced map k(p) — k(p) is the identity}

Proof. Assume G constant and let K, be the group defined in the last part of the propo-
sition. We need to prove that K, is invariant by base change since Kz = H, where

P € Spec/ ® k(p) is as in 4.4.11 (also if G is not necessarily constant). If g € G, we
have a commutative diagram

k(p) —— k(p) ®op O —— Ek(p')
| | a®id 18
k(g(p)) — k(9(p)) ®o, O — k(g(p'))

where «, f are the maps induced by g € Aut &/, Aut &/’ respectively. If g € K, then
g(p) = p, B =id, a = By = id and therefore g € K. Conversely if g € K, so that
a =1id, then a ® id = id. In particular g(p’) = p’ and B =id, i.e. g € Hy. O
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Proof. (proof of Theorem 4.4.7 assuming Theorem 4.4.4). First note that if Y is normal
then X is regular in codimension 1 if and only if it is normal, because f has Cohen-
Macaulay fibers. All the statements in the Theorem are local in the codimension 1
points of X and Y. Therefore we can assume that Y is the spectrum of a DVR R and
that X = Spec A, where A € LAlg® R. In order to conclude it is enough to note that, in
this case, e? = vr(sy) and, if G is a glrg and A € G-Cov, e{} =vg(sty). d

Now that we have collected all the needed definitions, we can start proving all the
lemmas required for the proof of Theorem 4.4.4.
Notation 4.4.13. Given o/ € LAlgE T we will denote by P“/91 = Ker tr?/9T and by
o?/0r . pF/Or & P /Or __ Op the restriction of tr?/OT om,,. Again we will simply
write P and 0 when T will be given.

We now show how to describe the trace map in the case of an algebra with an action
of a glrg.
Lemma 4.4.14. Let o/ € LAIg®T. Then tv’: o — Op is G-equivariant. If we
assume that G is a glrg, that /¢ = Op and that rk o/ = 1k G, then we also have

PY = Kertr? = @ VY@ Q¥ and Q¥ = @V\/®Q”{Zf
RAVElG Vel
Moreover Proposition 4.4.6 1is true.

Proof. In order to prove that tr” is G-equivariant we can work locally in the étale
topology and assume T affine and G' constant. In this case it is clear that tr (g(z)) = =
for any g € G and x € &/. Now assume that G is a glrg. We will have that

Ker tr” = @ VV @ Ty with Ty C Qf
Vel
Note that since G is linearly reductive, tk.&/ = rk G is invertible in OF and therefore
tr? : o/ — Orp is surjective. So

or= P vVe @QF/Tv)
Velag

is a G-equivariant decomposition and therefore I'yy = Qf}{ . Let V;W € Ig. By construc-
tion the product of elements of V¥ @y and WY ® Qw lies in Ker tr?, i.e. has no compo-
nent in &% = Q”‘j{, except for the case when W = V. So the trace map &/ — /" is the

direct sum of the maps induced by dy: VV@Qy @V Qyy — o Qo — o BLEN Or.
We have seen that tr,, = (rtkG)w, where 7 is the projection according to the G-
equivariant decomposition of o7. By 4.2.46, the map dy is given by

u(ey v @wy )

Vo aVeaQy ~VVeV ey Qv Qg

where e,: (¥) ® (¥)” — R is the evaluation map and u = rk G/ tk V, which is invertible
by 4.2.45. So the map induced by the above morphism is exactly u(idyv @ &y): VY ®
Q”{Z/f — VV® (ng)v’ as required. For the last claim, if &/ € G-Cov, it is enough to
note that det {y induces the section sy y, where f is the map Spec.o — T O
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One of the key points in the proof of Theorem 4.4.4 is the local case. We are going
now to focus on it.

Lemma 4.4.15. Let R be a strictly Henselian DVR, A € LAIg® R such that A is local,
A =R and tk A = |G| Then

Q" = Coker(PA 75 (PA)"), Imodt € mp(PA)", ma =mp®PA, trajp(ma) Cmp
Moreover the following conditions are equivalent

1) oA is surjective onto mp(PA)" ;

2) Q4 is defined over the closed point of R;

3) ed =1kA—-1

4) et <1k A.

Proof. Since G is linearly reductive, rk A = rk G € R*and the trace map tr* is surjective
and since G is étale and R strictly Henselian, G is constant. In particular P4 is free
and A = R ® PA. Moreover my = PA @ mp thanks to 4.4.14 and 4.2.47 and therefore
trd(m4) € mp. This shows that o4 has image in Hom(PA mpg) = mR(PA) . Since
G A AV s the sum of the multiplication R —— A, RV and the map o4, we have

that o4 = Coker oA and that 04 is defined over the closed point of R if and only if

(PA) C Imoyg, ie. the equivalence between 1) and 2) holds. In this case Q4 =
('PA)V/mR(PA)v ~ (R/mg)!¢I=1, which shows 2) — 3) = 4). So it remains to
prove that 4) = 1). Let m € R be a uniformizer. Since o4 has image in W(PA) we
can set u = oA Jm: PA — (PA) and we have to prove that u is an isomorphism. Note

4 = yp(det ¢4) and so

that, by construction, e
0 <wvp(detu) =et —1tkA+1<1 = detu € R* = wu isomorphism

O
Lemma 4.4.16. Let R be a DVR, P be a free R-module and n: P @ P — R be an

R-linear map. Then if Q C P is a saturated submodule and we assume that both n and
1@ are injective then Q+ = {x € P | n(x®@y) = 0 for all y € Q} is saturated too and

Qo=
Proof. Tt easy to check that Q= is a submodule of P which is saturated. Moreover
QNQ*T =Ker(ffgeg) =0 = Q& Q- CP
Since both @ and Q* are saturated, we have only to prove that rk Q+ = rk P — 1k Q.
Consider the diagram
0— QL — P— P/Q+ —0
o I LB
O—)P/QVHPV*)Q\/;)O
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The first row is exact since Q= is saturated, the second one because @ is so. Note that

Q+ = Ker(P Ty pyv— Q") and therefore the maps 8 and « are well defined and 3 is
injective. By the snake lemma we get that rk Coker 5 = 0 and the desired equality. [

Remark 4.4.17. If R is a DVR and A € LAlg® R then A is generically étale if and only
if e4 < 0o or rk @4 = 0. Indeed those conditions are all equivalent to the condition that
tr Agr(r) 1S an isomorphism.

The following lemma is the hard part in the proof of Theorem 4.4.4.

Lemma 4.4.18. Assume that G is a solvable group and let R be a strictly Henselian
DVR. Let also A € LAlg® R be a local algebra such that AS = R and that the action of
G on A is generically faithful. Then A is a DVR if one of the following conditions holds:

e Q4 is defined over the closed point of R;
e et <1k A

Proof. Note that if one of the above conditions is satisfied, then A is generically étale
and so generically a G-torsor thanks to 4.4.17 and 4.4.10. In particular rk A = rk G and
by 4.4.15 the two conditions in the statement are equivalent. We will make use of 4.2.47
and we will argue by induction on rkG. Note that G is constant and that by 4.1.22 G
is a glrg. We first consider the base case G ~ Z/pZ, where p is a prime. There exists a
basis {v;}ieq+ of A such that v;v; = 1; jviy;, with ¢; ; € R. Set e; j = vr(t; ;), where
vp is the valuation of R. The associativity conditions yield relations

wn,t¢n+t,s = ¢t,swt+s,n = ent Tt entts =€ts+t Ctsn = €n—n =€-nstEs—nn
(4.4.1)

From 4.4.14, we have
€A == Z €i,—i
i#0

Since A is local we have that e; —; > 0 for all 7 # 0. In particular e < p implies that
ei—; = 1 for all i # 0. From (4.4.1) we see that e,; € {1,0} for all n,t. Note that
ma/ m,24 is G-equivariant and by contradiction assume that dimg m 4 /m124 > 1. Since
en,—n = 1, vpv_y, generates the maximal ideal mpg of R and therefore mpA C mi and
(ma/m?)o = 0. Moreover dimg(ma/m?), € {1,0} for all n, because, if n # 0, v, € my
and mgv, C m%. So there exists n # t € G* such that v,,vs ¢ mi and n,t # 0. Note
that if v + s = n, with u, s # 0, then e, s = 1 since otherwise

Uy Vs = Py sV With ¢, s € R* = v, € m124
and similarly if u+ s =t. So set u = n — t and consider the relation
€—ut+u + €tu = Cu,—u = 1

obtained from (4.4.1). We have that —u,t+u = n,t,u are all non zero and by the remark
above we get
€_yuttu = €ty = 1l = 2=1
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which is impossible.

We now come back to the general case. If G is simple, then we are in the base case.
Otherwise take a normal subgroup 0 # H # G of G and let B = AT,

We want first to prove that B is a DVR using the inductive hypothesis on B/R. Since
H is normal, we have that B € LAlgG/ H R and that it is generically a G/ H-torsor. From
4.2.49 and 4.4.14 we have that

PP= @ W'eapcP'nB= P V) e
RAWEIG i R#Velg

Since B= R&® PP C R® P4 N B = B we can conclude that PZ = P4 N B. Moreover
B is local. Indeed if z € BN A* and y € A is such that zy = 1 we will have

1= Hh(xy):m‘m(n h(y)) = x € B*

heH heH

We can apply 4.4.16, since PP is saturated in P4 and both ¢4 and a/li are injective since
A and B are generically étale. So P4 = PB @ (PP)L. Moreover o8 and UA|7;B differ
only by the multiplication of rk A/ 1k B = |G|/|H| € R* since PZ = PA N B. We can
conclude that QB/E is a submodule of Q4/E and it is therefore defined over the closed
point of R. We can now apply the inductive hypothesis on B/R and conclude that B is
a DVR.

We are going now to apply inductive hypothesis on A/B. Note that B is strictly
Henselian since B/mp = R/mp and B/R is finite. We clearly have that A is generically
a H-torsor on B. Since k(B) ~ B ®pr k(R), A ®g k(R) is free over k(B) and A C
A®pk(R), we see that A is a B-module without torsion and therefore free. This means
that A € LAlg” B. In order to apply the inductive hypothesis on A and conclude that
it is a DVR, we have to show that the image of the map &A/B: A — Homp(A, B)
contains mp Homp(A, B), thanks to 4.4.15. Since A is free over B and B is free over R
we have the relations

trgp/potry/p =trayp = ’([Jotl"A/B =trya/r

where 1: Homp(A, B) — Hompg(A, R) is the map induced by trg,p: B — R. We
start proving that v is injective. Let ¢: A — B be such that ¢(¢) = 0. This means that
Im¢ C PB = Kertrg/p. If Im¢ # 0, since it is an ideal of B, we will have Im ¢ = mby
for some t. In particular Im ¢ N R # 0, while we know that PZ N R = 0. So it remains
to prove that if y € mp and ¢ € Homp(A, B) then £ = ¢(y¢) € Imt/fA/R. Remember

that mp Homp(A, R) is contained in Im fr 4 /R since Q7 is defined over the closed point
of R. Let m € R be an uniformizing element. We have

Vo € Ag(x) = (yo)(z) = trp/r(y¢(z)) € mp — & =n(§/m) € mpHompg(4, R)

since trg/r(mp) C mg, thanks to 4.4.15. O
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Lemma 4.4.19. Assume that R is a DVR, A € LAIg¢ R and call R*" the strict
Henselization of R. Then A is reqular (generically a G-torsor) if and only if A ®p R*"
18 SO.

Proof. A®pg R%" is faithfully flat over A and it is a direct limit of étale extensions of A.
In particular Spec A x p R®" — Spec A is surjective and the dimensions of the tangent
spaces remain constant. So A is regular if and only if A ®r R*" is so. Since R*" is a
domain and the condition of being a G-torsor is open, we get that A is generically a
G-torsor if and only if A ®p R*" is so. O

Lemma 4.4.20. Assume that R is a DVR and let A € LAIg® R such that AS = R and
that the action of G is generically faithful. If A is reqular then it is generically a G-torsor
and the geometric stabilizer of a closed point of A is cyclic.

Proof. Thanks to 4.4.19 we can pass to the strict Henselization of R and assume that
G is constant. Let p € Spec A be a closed point, k be the residue field of R and H be
the stabilizer of Spec 4, in Spec A. By 4.1.36, we know that indg Ap ~ A. In particular
A, € LAIg" R, it is a DVR and A[I,{ = R. From 4.2.47 we see that k(p) = k and
therefore H is the geometric stabilizer of p and it is given by H = {g € G | g(p) = p}.
Moreover A, ® k(R) is a field such that (A, ® k(R))¥ = k(R) and therefore a separable
extension of k(R). So A® k(R)/k(R) is étale and therefore a G-torsor thanks to 4.4.10.
We can conclude that A, is generically a H-torsor by 4.3.7 and, again by 4.4.10, that
H C Autr A,. Consider the map

H — Auty, mp/mi ~ k*

We will prove that it is injective, which implies that H is cyclic. Let h € H C Autgr A,
such that f, /m2 = id and 7 be a uniformizing of A,. We first show that h(m) = 7. If
h(w) # 7, we can write

h(m) = 7 4+ ur® mod m];+1 withuw € R*, k> 1

k +1

An easy induction shows that h"(7w) = 7 + nur” mod m]; . If n is the order of h, so
that h™(m) = 7, we will have nu = 0 and therefore u = 0 since chark { n. So hy,,,, = id.
If a € A, then there exists 7 € R such that a —r € m;, and we have

h(a) =h(a—7r)+h(r)=a—r+r=a

We are now ready for the proof of 4.4.4.

Proof. (of Theorem 4.4.4) We first consider the last part of the statement, i.e. the case
when G is a glrg. From 4.4.14 we have that

ot = @ VV® Qff and e = Z rkV - et
Velg Velg
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In particular 2) <= 4) and, thanks to 4.4.17 and 4.4.10, we also have that any of
the conditions 1),2),3),4) implies that A is generically a G-torsor and A € G-CovR. In
particular rk A = rkG € R*, Q}% = 0 and rk Q{} = rk V. The existence of a surjective
map O3, — O tells us that 4) = 3), while Q4 = 0 tells us that 3) = 1).

We now consider the general case. Note that the length does not change when passing
to the strict Henselization of R and an R-module is schematically supported on the
closed point of R if and only if it is so on the strict Henselization of R. Thanks to 4.4.19,
we can assume that R is strictly Henselian and therefore that G is constant. We want
now to reduce to the case in which A is local. Denote by k the residue field of R and
let p € Spec A be a closed point and H be the stabilizer of the connected component
Spec A, of Spec A. By 4.1.36, we know that ind% Ap ~ A. In particular AZI){ =R, H
is the geometric stabilizer H), of p since k(p) = k by 4.2.47, A, € LAlg? R and A is
generically a G-torsor if and only if A, is generically a H-torsor. Since R is strictly
Henselian we have that

A= H Aqg, o4 = @ QA et = Z e = | Spec,, Aler

g€Spec,, A g€Spec,, A g€Spec,,, A

where the last equality holds since A, ~ A, for any ¢ € Spec,,, A, thanks to 4.1.35. Note
also that B
|G|/|H| = | Spec,,, A| = | Spec A ® g k| = | Spec A ® k|

since k(q) = k for any ¢ € Spec,,, A. We can therefore assume A to be local and generically
a G-torsor and that G is solvable. Lemma 4.4.18 assure us that if the conditions in the
statement are fulfilled then A is a DVR and e = rk A — 1. So assume that A is regular
and therefore that G is cyclic, thanks to 4.4.20. In this case

A= @ Rup, vpvp = ¢y tUp 4 with 1, € R — {0} and my = @ Ru,
neG* n#0

From 3.2.43, we can write 1, ; = Ant2Emt with Mgt € R*, 2 € mp — m% and & is as
in 3.2.39. In particular &, _,, = 1 for all 0 # m € G*. If V,,, is the one dimensional
representation associated with m € G* we see that Q{}m = R/(z%m-m). In particular
condition 4), and therefore all the others thanks to the initial discussion about glrg, are
satisfied. O

Remark 4.4.21. In 4.4.4 the conditions 1) e? < 1k A and 2) Q4 defined over the closed
point of R do not depend on the action of G. This suggests the following question: given
a finite and flat algebra A over a DVR, is it true that A is a generically étale regular
algebra if and only if it satisfies 1) or 2)?

The answer to that question is negative for condition 1). Indeed take a not regular
local R-algebra B, a local regular one C with e = rkC' —1 and define A = B x C". The
algebra A is not regular but

e =P 1 r1kC —r<rkB+rtkC =1kA < r>eP —1kB
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Anyway this is not a satisfying answer, since it is clear that in this general situation a
right condition on e? has to take in consideration the value of |Spec A ®g k|, where k
is the residue field of R. So one can change condition 1) with the more strong e <
tk A — | Spec A ®g k|.

In general also the converse is false, if we do not assume some condition on rk A.
Consider for example a DVR R with uniformizer 7 such that 0 # 2 € mp and consider

f(z) =2* — 2z — 7 and A = R[z]/(f)

I claim that A is regular, generically étale over R with residue field R/mpg but e >
tk A = 2. Tt is generically étale since A ® k(R) is either k(R)? or a field, in which case is
a separable extension of k(R) because f is separable. It is local because A®Rk = k[z]/(x?)
and it is regular because its maximal ideal (7, z) is clearly generated by z. On the other
hand

~ ~A
traz =2, traz? =4+2r = dettry =4(14+7) = e =vg(dettr”) = 20p(2) > 2

There are other possible remarks in this direction and, at the end, a very reasonable
conjecture is the following

Conjecture 4.4.22. Let R be a DVR with residue field k and A be a finite and flat
R-algebra. Then
e > 1k A —|Spec A @r K|

and the following conditions are equivalent:

1) A is regular, generically étale with separable residue fields and the localizations of
A ®p k have ranks prime to the characteristic char k;

2) the equality holds in the inequality above;
3) Q4 is defined over the closed point of R.

Currently I am able to prove the inequality above, the equivalence of 2) and 3), the
implication 1) = 2) and 2) = 1), except for the regularity of A.
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In this chapter we describe Galois covers for the group G = pus x Z/27 defined over the
ring R = Z[1/2] and for the group S3 defined over R3 = Z[1/6]. This is a summary of
the division of the chapter.

Section 1. This section is dedicated to the description of the representation theory of
the group G over the ring R. We will show that G is a good linearly reductive group, that
B G ~ B S3 over R3 and we will describe the geometrically irreducible representations of
G and their tensor products.

Section 2. We will describe the global data needed to define a G-cover. Such data will
be given in terms of linear algebra, that is as a collection of locally free sheaves and maps
between them satisfying the commutativity of certain diagrams. We will express those
conditions in terms of local equations.

Section 3. In this section we describe the geometry of G-Cov and S3-Cov and families
of G-covers with additional properties. We will prove that G-Cov (S3-Cov over R3) has
exactly two irreducible components and we will describe them in terms of vanishing of
maps between coherent sheaves. Such results will require the study of particular open
substacks of G-Cov and in particular of BG.

Section 4. We will give a characterization of regular G-covers and regular S3-covers in
terms of properties of closed subschemes of the base associated with the data defining
them. In particular we will prove an equivalence between regular G-covers, regular Ss3-
covers and regular triple covers satisfying a codimension 2 condition. We will then show
how it is possible to construct such covers and we will compute the invariants of the total
space of a regular Ss-cover of a smooth surface over an algebraically closed field.

5.1 Preliminaries and notation.

In this chapter we will work over the ring R of integers with 2 inverted, that is R = Z[1/2].
Sometimes we will also need to have 3 invertible in the base scheme and we will denote
by Rs the ring of integers with 6 inverted, that is Rz = Z[1/6]. In all the chapter the
symbol G will denote the group scheme G = s x Z /27 defined over R, where the action
of Z/27 on s or, equivalently, Z/3Z is given by the inversion. Note that, in this case,
o =~ Z/27. Moreover, over Rs[z]/(z%+x + 1), we have G ~ S3. In particular, by 2.3.11
and 2.3.12, we have isomorphisms

BG ~ B S5 and G-Cov ~ S3-Cov

over the ring R3. Therefore the study of G-covers coincides with the study of S3-covers
over R3. We have preferred to study G-covers directly, because the representation theory
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of GG has a simpler description and G, as we will see below, is a glrg over R, while S5 is
not even linearly reductive over this base. On the other hand we will remark the results
for G-covers that can be traduced in results for S3-covers.

We want to describe the representation theory of G. Set o € Z/27Z(R) for the generator
of Z/27Z. We will also think of o as an element of G(R) and as a given transposition
of S3(R). Set also Vy = R, Vi, Vs for the representations of us corresponding to its
characters in Z/3Z. Moreover consider the set I of G-representations

R, A=V, V=ind] 1

3
where x: G — G, is induced by the non trivial character of Z/2Z. Since 2 is invertible,
it is easy to check that (G, Ig) is a good linearly reductive group over R: it is linearly
reductive because extension of a diagonalizable group and an étale constant group of
order invertible in R and it has a good representation theory because the representations
in I restrict to the irreducible representations of S3 over the geometric point Spec Q —
Spec R (see 4.1.10). We will consider the following basis 1 € R, 14 € A and vy,vy € V
such that v; € V;. Moreover since o exchanges Vi and Va, we will also assume that

o(v1) = vg,0(v2) = v1. Now we describe the tensor products of the representations in
Igz. We have

AQA>R, 1414 —1and AQV =V, 140 Qv — —v1,1l4Quy — 19
and, if we set v;; =v; @v; € VRV,
ROADV 2V RV, 1 — vi2 +v21,14 — v21 — V12,V1 — V22,V2 — V11

Finally note that the G-equivariant projection V@ V. — R, v;; — 1 — §;;, where ;5
is the Kronecker symbol, yields an isomorphism

\Y * *
V~VY v — vg,02 — 0]

Since we will have to deal with locally free sheaves of rank two, we recall here the
following fact about them.
Remark 5.1.1. If F is a locally free sheaf of rank 2 over a scheme T', the canonical map
F ® F — det F induces an isomorphism
F~F' @det F

If y, z is a basis of F, then the above map is given by y — —2*®(yAz), z — y*@(yAz).

In this chapter, we will often prove statements valid over any scheme and, in order to
simplify the reading, the letter T', if not stated otherwise, will denote a scheme over the
given base, that is R or Rs.
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5.2 Global description of (u3 x Z/27Z)-covers.

In this section we want to describe the data needed to define a G-cover over any R-scheme.
The idea will be to use the results of the previous chapter and describe particular lax,
symmetric monoidal functors Loc® R —» LocT. We first introduce such data and then
we will show their relationship with G-covers. We remark here that the global description
obtained here, although with a different notation, has already been introduced in | |.

Notation 5.2.1. In this section only, by an Op-algebra or a sheaf of Op-algebras we will
mean a locally free sheaf of (non associative) rings .« over T' with a unity 1 € .

We define the stack ) over R whose objects are sequences x = (£, F,m,a, 3, {(—,—))
where: £ is an invertible sheaf, F is a rank 2 locally free sheaf and m,a, 3, (—, —) are
maps

L2 Op, LOF - F, Sym? F 5 F, det F = 1

With an object x € Y as above we associate the map (—, —),: F ® F — Or given by

(— )y FOF~ FY @det Fo F 2008, pvig pop 429 2V g 7 0

where we are using the canonical isomorphism F ~ F¥®det F. Notice that, although we
are using the symbol (—, —) of a symmetric product, (—, —),, is not necessarily symmetric.
Moreover we also associate with x the maps ~,, 7;(: F®F — Or @ L given by

Tx = (_7_)X + <_’_>7 ’Y;( = (_7 _)X - <_7 _>

When Y is given, we will simply write (—, —),v,7" or x = (£, F,m,, 3,(—,—),(—,—)) €
Y. Moreover we set

MX:OT@EGB]‘H@]:Q with 1 = Fo = F

Proposition 5.2.2. Given x € Y as above, the sheaf 7, has a unique G-comodule
structure such that Fo = O & L, F1, Fo define the pus-action and o acts as —idg on L
and induces idr: F1 — Fo.

This Proposition will be proved in the next section. We endow 27, with a structure of
sheaf of Op-algebras given by the maps

L2 0, FIOLLRF -5 Fi, R@L~LRF) — F

FIoFR R RoR Lt F, FoFR 5000l FaoFi -5 0ra L

We are implicitly assuming that the maps Or ® &, , %, ® O — 4/, are just the usual
isomorphisms, or, in other words, that 1 € Or is a unity for .

We want now to give a list of equations involving the maps m, a, 8, (—, —), which we
will show are the relationships needed for the associativity of <7,. Such equations will be
"local’ relations and therefore we introduce the following notation:
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Notation 5.2.3. When we fix a generator ¢ of £, the maps m, «, 3, (—, —) will be thought of
as: m € Op, given by m(t®t); a: F — F, given by “a(u) = a(t®u)”; (-, —): det F —
Og, given by “(u,v) = (u,v)t”. When we will say that some particular relation among
the maps m, «, 3, (—, —) locally holds, this will always mean that such relation holds as
soon as basis t and vy, z of, respectively, £ and F are given.

The equations are:

2

o =midr (5.2.1)

(a(u),v) = (a(v),u) (5.2.2)
a(Blu®v)) = —Bu® a(v)) (5.2.3)
B(B(u®v) ®w) = (a(w), v)u — (w, v)o(u) (5.2.4)
(u, B(v @ w)) = (w, Blu @ v)) (5.2.5)

Moreover note that, locally, we also have the relation

(@, )y = (a(y), z) (5.2.6)

Taking into account the definition of LRings% given in 4.2.15, we will prove the following
Theorem.

Theorem 5.2.4. The map of stacks

Y LRingS%
X:([ﬂ]:amaa767<_a_>)‘ :’%X

1s well defined and induces an isomorphism between the substack of YV of objects that
locally satisfy the relations (5.2.1), (5.2.2), (5.2.3), (5.2.4), (5.2.5) and G-Cov (where a

cover is thought of as its corresponding sheaf of algebras).

The next section is devoted to the proof of the above Theorem.

Notation 5.2.5. Assuming Theorem 5.2.4, we will identify the stack ) with G-Cov and,
over R3, with S3-Cov. Therefore we will also use the expression x = (£, F,m, «, 3,{(—, —)) €
G-Cov and similarly for Ss.

5.2.1 From functors to algebras.

The goal of this section is to deduce what data is needed to define a G-cover and to
prove Theorem 5.2.4. Consider the map f: Loc® R —s N given by fyr = rkW. By
Theorem 4.2.29 and remark 4.3.4, we need to describe the symmetric lax monoidal func-
tors Q: Loc® R — Loc T such that 1k = f, i.e. (LMon%f)gr. We will proceed in the
following way. We will identify ) with a closed substack of (LPMOD% £)8" in such a way
that, for any x € ), the algebra 7, as defined in the previous section, is isomorphic to
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the algebra x grjg], where x is thought of as a pseudo-monoidal functor. For convenience,

set X for the full substack of (LPMOH% £)8" of functors Q such that Qg = Or and 1 € Qg
is a unity for €.
By 4.2.6, an R-linear functor 2 such that rk® = f and that Qr = Or is just given by

Qu=2L, Qp=F

where £ is an invertible sheaf and F is a rank 2 locally free sheaf, both over T. The
corresponding G-equivariant sheaf is

Ho=R" @O0roA"@LOVY®F
A pseudo-monoidal structure on £ for which 1 € O = Qg is a unity is given by maps

LOLTSOp, LOF-5F, FOL-SF FoFr 29 o oraF

The stack X can be therefore thought of as the stack whose objects are sequences
(L, F,m,a,&,n, B) as above. In particular ) can be embedded in X by sending y =
(L,F,m,c,B,(—,—)) € Y to the sequence (L, F,m,®, &, (—, =)y, (—, —), ), where & is
obtained from « exchanging the factors in the source.

Given 2 € X, we want now to describe the algebra /. It will be convenient to
introduce the following notation:

Li=A"QL, Qo=07r80L, Q1 =W F, Q=V"'aF

In particular
Ho=01rS L SO D Qo

where Qp, Q1, Q2 are the sheaves induced by the p3 action on .oy, while o is —idg, on
Ly and induces the isomorphism Q; — Qa, v; ® u — v} ® u. We want to describe the
multiplication on 7 starting from the maps m, a, &, 7., 8. The sheaf Qy is a Z/2Z-cover
and the associated map

L1 ® Ly 5 OF

is just given by p(1% ® 2 ® 1% @ y) = £(z ® y). Then we have the maps
Li®QI =5 Q1 L1©Q O
that are given by
((hezovyey) =vazey), (10 ®y) = -vialz@y)

The multiplications of Q1 and Qs with L are just obtained exchanging the factors above
and replacing « by &. Finally we have maps

Q1®Q1L>Q2, Q2®Q2L>Q1, Q1®in>OT@[11, QQ®Q16—,>OT@£1
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that are given by
Avs@zeu;@y) =viBEey), N @] ®y) =v36(xQy)

S(v3 QxR0 ®Y) =m(rey)+Lin(rey), (v @z ey) =mn(zey) - 1in(zey)
Now define

PBo=0r LSO F1 D Fowith F1=Fo=Fand Fo =071 L

The isomorphisms R ~ AY, R ~ V7V, R ~ V4" induce an isomorphism B ~ @/ of
coherent sheaves. The G-comodule structure inherited by %q is given by: Foy, F1, Fa
yields the ps-action, while o € Z/27 acts as —id, over £ and induces idr: F; = F —
F = Fo over Fi. The Op-algebra structure inherited by %Bq is given by

L2 Or LOFL S Fl, LOF =% Fo, FIOL -5 F, oo L =% F

FIOF 5 Fo o R Lo Fl, Ao F 25 0r 0L, oo FL 25 Ora L

where v = 11 + 12 and v/ = n; — n2. This shows that given x € ) C X we have that
gy, as defined in the previous section, coincides with %, in LRings%. In particular this
proves 5.2.2.

Commutativity conditions. Given 2 € X, we want to read the symmetry of Q on
the associated sequence (£, F,m, a, &, s, 8). Since L is invertible there are no conditions
for the commutativity of the first map m. The map &: F ® L — F is clearly obtained
from « with an exchange. Finally note that the exchange isomorphism V@V ~V QV
is the identity on both R and V', while it is minus the identity on A. So the symmetry
for the map Qy ® Qy — Qygy is equivalent to the symmetry of 71 and 5 and to the
antisymmetry of 5. When Q € X is symmetric we will use the notation

(=, =) =m: Sym*F — Op, (—, =) =no: det F — L

The associated sequence will be (£, F,m,«, 3, (—,—), (=, —)), where we omit & because
it is determined by «.

Associativity conditions. Given a symmetric 2 € X, we want to read the asso-
ciativity conditions on the associated sequence (L, F,m,a,f,(—,—),(—,—)). We can
(and it is also convenient to) understand such conditions working directly on the algebra
PBq. Actually, we will proceed by listing some diagrams that must commute when %q
is associative and then we will show that their commutativity is indeed enough to imply
the associativity of %q.

We will make use of the notation introduced in 5.2.3.

cocer M oie F

id®a |ia
L@ F = Fi

Locally we obtain the condition (5.2.1).
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id
FloReol XS (Oser) el

1
LRLDL
d®—a
Jm@id
F1® Fo Os® L
The commutativity of this diagram is locally equivalent to (u,a(v)) = —m(u,v),
(u,v) = —(u, a(v)) and, assuming (5.2.1), to (5.2.2) and (u,v) = (a(v), u).
[ ]
Bid
FI1F1®L Fo® L
lid@a Jfoz
B
F1®F1 Fa

The commutativity of this diagram is locally equivalent to (5.2.3).

B®id

Fo® Fo® F1 F1® F1
lid@v’
B
F2® (Os @ L)
12 idd(—a)
Fo®dFoRL Fo

The commutativity of this diagram, assuming that (u,v) = (a(v),u), is locally
equivalent to (5.2.4).

id®
FloFRer - rner

l,ﬁ’@id / J“/
Fo@F — s 0Osa L

Since 7/ (u ® v) = v(v ® u), the commutativity of this diagram is locally equivalent
to (5.2.5) and the analogous one for (—,—), which however follows from (5.2.1),
(5.2.2), (5.2.3) and (5.2.5), assuming (u,v) = («(v), u). Indeed

—(B(e(u) ® v), w) = (w, B(e(u) ® v))
{a(u), B(w @ v)) = (u, v @ w))

(w, B(u® v)) = (a(B(u@v)),w)
= (w, B(v @ a(u)))

In order to prove that the associativity conditions we have introduced are enough to
deduce the associativity of %q, we need the following remark.
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Remark 5.2.6. Let A be a commutative (but not necessary associative) ring and z,y, z €
A Tf

(zy)z = x(yz) and (yz)z = y(x2)

then all the permutations of z,y, z satisfy associativity. Indeed
y(zz) = (yz)z = x(y2) = (y2)z, 2(xy) = (yx)z = y(zz) = (22)y

(zy)z = x(yz) = (xy)z = 2(yx), (22)y = y(zz) = (yz)r = 2(2y)

Proof. (of Theorem 5.2.4) The map in the statement is the composition ) — (LPMon%f)g]r AN

(LRings%)&" and it is fully faithful. Call ) the full substack of ) satisfying the condi-
tions of the statement. By Theorem 4.2.29 and remark 4.3.4, we need to prove that
(Ll\/[onf,cif)gr =).

(LMon%f)gr CY. Let Q = (L, F,m,a,fB,(—,—),(—,—)) € (LMon%f)gr, where we
are using the description for symmetric functors, and x = (£, F,m,a, 3, (—,—)) € V.
One of the associativity conditions, namely the local conditions (u,v) = (a(v), u), tells
us that (—,—) = (—,—)y, thanks to (5.2.6). In particular Q@ = x € Y. In order to
conclude that ) € ), it is enough to note that the conditions in the statement are all
associativity conditions for €2, which are satisfied because 2 is associative.

Yy C (LMon%f)gr. Let x = (£,F,m,a,3,(—,—)) € Y C Y. The relations (5.2.2)
and (5.2.6) imply that <7 is a commutative Or-algebra. We need to show that .7,
is associative and we will use 5.2.6. Given A, B,C € {Og, L, F1,F2} we will say that
(A, B,C) holds if a(bc) = (ab)cforalla € A,b € B,c € C. Since o € Z/27Z induces a ring
automorphism of &, , if (A, B, C') holds then (¢(A),o(B),c(C)) holds and, moreover, if
also (B, A, C) holds then all the permutations of (A4, B,C) and (c(A),o(B),o(C)) hold.

Clearly (L, L, L) holds. Condition (5.2.1) insures that (£, L, F1), (£, L, F2) and all
their permutations hold. Condition (5.2.2) says that all the permutations of (Fi, F2, L)
hold, while condition (5.2.3) tells us that all the permutations of (Fy, F1, £) and (Fa, Fa, L)
hold. The relation (5.2.4) implies that (Fi, Fi,Fa), (Fa, Fa, F1) and all their permuta-
tions hold. Finally (5.2.5) says that (Fy, F1, F1) and (Fa, Fa, F2) hold. It is now easy to
check that we have obtained all the possible triples. ]

5.2.2 Local analysis.

Let x = (L, F,m,a, 3,(—,—)) € Y and assume that ¢t € L is a generator and that y, z is
a basis of . The aim of this subsection is to translate conditions (5.2.1), (5.2.2), (5.2.3),
(5.2.4) and (5.2.5), writing all the maps «, 3, (—, —) with respect to the given basis. In
particular we will use notation from 5.2.3, so that m € Op, « is a map F — F and
(—,—): det F — Or.

Notation 5.2.7. Write

BY*) = ay+bz, B(yz) = cy +dz, B(z°) = ey +df, (y,2) =w, a = < é g )
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We start computing useful relations in order to impose the associativity conditions

(y,y) = —Cw, (y,2) = —Dw, (z,y) = Aw, (2,2) = Bw

BBWy) = (@®>+bo)y+bla+d)z  B(B(z%)y) = (ea+ fe)y+ (eb+ fd)z
B(B(y*)2) = (ac +be)y + (ad +bf )z B(B(2%)2) = e(c+ fy + (ed + f)z
B(Byz)y) = B(B(zy)y) = cla + d)y + (cb+ d*)z
B(B(yz)z) = B(B(zy)z) = (¢ +de)y + d(c + f)
(y, B(y?)) = bw (y,B(2%)) = fw
(z,B(y%)) = —aw (z,8(z%) = —ew
(y, B(y2)) = (y, B(zy)) = dw (2,8(yz)) = (2, B(zy)) = —cw
v (

a(B(y?) + Blaly)y) = (2a6A+bB+cC)y+ (Cla+d) +b(A+ D))z
a(B(yz)) + Bla(y)z) = (2cA+dB+eC)y+ (C(c+ f)+d(A+ D))z
a(B(zy)) + B(a(z)y) = (Bla+d)+c¢(A+ D))y + (2dD +bB + cC)z
a(B(2%) + Bla(z)2) = (Ble+ f)+e(A+D))y+ (2fD +eC +dB)z

From the above relations we can conclude:

Lemma 5.2.8. The object x = (L, F,m,a, 3,(—,—)) € Y belongs to G-Cov if and only
if the following relations hold.

(52.1) <= m=A2+BC, (A-D)(A+D)=B(A+D)=C(A+D)=0

(5.2.2) <= w(A+D)=0
(2aA+bB+ cC) = (2cA+dB+eC)=0

Cla+d)+b(A+D)=C(c+ f)+d(A+ D) =

(5:23) Bla+d)+c(A+D)=B(c+f)+e(A+D) =
a(A+D)—D(a+d)=c(A+D)—D(c+ f) =
a’ +bc=—wC, ac+be=w(A— D), ¢ +de= Bw
(a—d)(a+d)=bla+d)=cla+d)=0
(524) = (c— e+ f)=dlc+f) =elc+ ) =0
ala+d)+blc+f)=ela+d)+clc+ f)=0
(5.2.5) «— wla+d)=w(c+ f)=0

(5.2.7)

Remark 5.2.9. It is not true in general that some of (a + d), (¢ + f), (A+ D) is 0. For
instance over the ring k[z]/(z?) we have a G-cover given by

a=b=c=d=e=f=w=A=B=C=D=x, m=0
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On the other hand if we are on a reduced ring R then (a+d) = (c+ f) = 0. Indeed over
every domain we have

(a+d)#0 = a=d,c=b=0and a(a+d)+blc+f)=0 = a=0

8o a + d = 2a = 0. The same argument shows that ¢+ f = 0.

Notation 5.2.10. Given x = (L, F,m,a, 3,(—,—)) € Y, a basis y, z of F and a generator
t € L, we will denote by

ay, by, Cxs dys ex, fr wy, Ay, By, Oy, Dy, my

the data associated with x as above. We will always omit the —, if this will not lead to
confusion.

5.3 Geometry of (u3 x Z/27Z)-Cov and Ss;-Cov.

The aim of this section is to describe the geometry of the stack G-Cov and, as a conse-
quence, of S3-Cov. Clearly this is related to the problem of the description of G-covers:
we will individuate three smooth open substacks of G-Cov, that is families of G-covers
with a certain global or local property. In some cases this will allow us to describe
G-covers using less data than needed to build a general G-cover, that is the objects
L, F,m,a, S, (—,—). For instance when (—, —): det F — L is an isomorphism, we will
show that the data F, 8 determine all the others. This is the first locus we will describe,
denoted by U,,. The other two will be the locus U, where « is never a multiple of the
identity and the locus Uz where 3 is never zero. Although in those cases we do not
have a global description of GG-covers belonging to these families, what we have is a local
description that will be extremely useful also in the next sections, for instance because
it will turn out that any G-cover between smooth varieties belongs to the locus where
is never zero.

Unluckily, the three loci described above do not cover G-Cov, actually we will see
that they are contained in the main irreducible component Zg. On the other hand they
almost cover Zg: the complement of their union in Zg is formed by the “zero covers”,
that is the G-covers where m = a = 8 = (—,—) = 0, and therefore, topologically, we
have missed only “one point”, actually one point for each characteristic. The stack Z¢g is
an irreducible component of G-Cov and Theorem 4.3.1 tells us that G-Cov is reducible.
We will show more: the complementary Z, of the union of U, U, and U in the whole
G-Cov is another irreducible component. Therefore G-Cov and, over Rg3, S3-Cov have
exactly two irreducible components. Although the covers in Z5 are highly degenerate,
the stack 25 has a very simple description and a very simple geometry, for instance it is
smooth, while Z4 is not. Over a field, Z5 is topologically composed of two points and
(G-Cov) — Z5 ~ B Gls. The last subsection is dedicated to the study of the irreducible
component Z¢ and we will show that, in this case, the maps m, «, 3, (—, —) are uniquely
determined by 8 and (—, —).
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5.3.1 Triple covers and the locus where (—, —): det F — L is an
isomorphism.

In this subsection we want to describe a smooth open substack of G-Cov, more precisely
the locus U, of objects x = (L, F, m,a, 3,(—,—)) such that (—, —): det F — L is an
isomorphism.

Definition 5.3.1. Define C3 as the stack whose objects are pairs (F,d) where F is a
locally free sheaf of rank 2 and ¢ is a map

§: Sym3 F — det F

Notice that Cg is a smooth stack over Z because it is a vector bundle over B Gly, which
is the stack of rank 2 locally free sheaves. We will show that U, is isomorphic to the
stack Cs. This also explains the reason of the section name: it is a classical result (see
| ) , |) that, over Rg3, the stack Cs is isomorphic to the stack Covs of
degree 3 covers. We will show that, in this case, the map Covs ~ C3 — U,, is a section
of the map G-Cov — Covs, obtained taking invariants by o € Z/2Z C G.

We now give an alternative description of C3 and we will need the following notation.

Notation 5.3.2. Given locally free sheaves N and F over T and a map (: N @ F — F
we will call trace of ¢ the composition tr{: N — F¥ @ F — Or. We will also denote
by Hom,,_ (N ® F, F) the subsheaf of Hom(N ® F, F) of maps whose trace is 0. Notice
that, when N/ = Op and F is free, the trace we have just defined is the usual trace of a
associated matrix.

Notation 5.3.3. Given §: Sym? F — F we will use the notation
trB=tr(F®F — Sym? F 25 F): F — O

If y,2 is a basis of F and B(y?) = ay + bz, B(yz) = cy + dz, B(2%) = ey + fz, then
(tr B)(y) = a+d, (trf)(z) = c+ f.

It is easy to check (see also | , ]) that if 3: Sym? F — F is a map such
that tr 8 = 0 there exists a dashed map 9:

9 BRid
Sym* F F — FQF
! |
Sym? F ----- > det F

This association yields an isomorphism

Hom,,_o(Sym? F, F) Hom(Sym?® F, det F)

(Z—Ca —€C>%}(_bace) (5.3.1)
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where the last row describes how this map behaves if a basis y, z of F is chosen, where
we have considered 13, y%z, y22, 2% as basis of Sym® F. So C3 can also be described as the
stack of pairs (F, ) where F is a locally free sheaf of rank 2 and 3: Sym?F — Fis a
map such that tr 5 = 0.

Notation 5.3.4. We will denote the correspondence (5.3.1) by 8 — d3 and § — fs.
Now let (F,0) € C3. Define 75 as the map

Sym? F % A2Sym? F @ A2F - Oy (5.3.2)
where v is induced by A%28s5: A% Sym? F — A2F and u is induced by

A’F @ Sym? F A? Sym? F
($1 AN .TQ) R 3Ty —— —T1T3 N\ T2Xg — X1T4 N\ T2X3

and as: det F ® F — F as the map induced by

det Fo FY o F = Fo F 22 04
using the canonical isomorphism det F ® FV ~ F. Finally define ms: (det F)? — Or
as minus the map induced by

det ajs

(det F)? @ det F ~ det(det F @ F) —2 det, F

Denote by Covs the stack of degree 3 covers, or, equivalently, the stack of locally free
sheaves of Oralgebras of rank 3. Denote also by U, the open substack of G-Cov of
objects x = (L, F,m,a,f,(—,—)) such that (—,—): det F — L is an isomorphism.
The theorem we want to prove is:

Theorem 5.3.5. The maps of stacks

(‘F75) ’ (detfuf)m57a57/657iddet]:)
A
C3 uw

(‘F75/3) ‘ \(E,]:,m,oc,ﬂ, <_7_>)

are well defined and they are inverses of each other. In particular U, is a smooth open

substack of G-Cov. Moreover, over Rs, the composition Covs ~ Cs A G-Cov is a
section of the map G-Cov — Covs obtained by taking invariants by o € Z/27 and the
same result hold if we replace G-Cov by S3-Cov.

We will prove this theorem at the end of this section, after collecting some useful
remarks.
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Remark 5.3.6. If y, z is a basis of F, we identify det F ~ Op using the generator y A z €
det F and we write § as

5(3/3) = —b, 6(y22) = a, 6(y22) =6 5(23) =e (5.3.3)
then we have expressions
ns(y?) = 2(a® + be), ms(yz) = ac + be, ns(2) = 2(c? — ac) (5.3.4)

205(y) = ns(y2)y — ns(¥*)2, 20s(2) = ns(2>)y — ms(y2)2
In particular, if x = (£, F,m,a, f5,(—,—)) € G-Cov, then, by (5.2.6) and (5.2.7), we
have
ns = 2(—, —)x (5.3.5)

We now want to show the relationship between C3 and Covs. The reader can refer to
| ) | for details and proofs.

Remark 5.3.7. If ® = (F,§) € C3 and we set o/ = Op @ F, we can endow g by a
structure of Or-algebras given by

Sym2 .F ns +B§ dq)

This association defines a map of stacks C3 — Covs. This map is an isomorphism if 3 is
inverted in the base scheme. Indeed if & € Covs, the trace map tr, /0, @ — Or is
surjective and we can write &f = Og @& F, where F = kertr,. The multiplication of o/
induces a map B: Sym? F — F such that tr 3 = 0 and therefore a §: Sym?® F — det F
such that g5 = 3.

Now let x = (L, F,m,a, 3, (—,—)) € G-Cov. It’s easy to see that

M;:{a@()@xl@xg | a € Op, x1 =29 € F}
where 0 € Z/27Z C G. The map

Or®e F N4
aPr—adD0Pxr D

is an isomorphism of Og-modules and the induced algebra structure on Op @ F is given
by
B: Sym? F — F and 2(—, —): Sym? F — Orp

Notice that it is not true in general that F = ker tr o, also if 3 is inverted: this equality
holds if and only if tr 3 = 0, for instance over any reduced scheme or, as we will see
in the next sections, over the principal irreducible component Z5 C G-Cov. In this
case (F,03) € C3 and &7 ~ A F55)- Moreover we get a well defined map of stacks
{tr 8 = 0} — Cs, where {tr 8 = 0} is the closed substack of G-Cov where tr 3 = 0.
When 3 is inverted, such map, composed by C3 — Covs, extends to a map of stacks
G-Cov — Covs, by taking invariants by o.
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Remark 5.3.8. Proposition 2.3.10 tells us that, over Rg3, the isomorphism G-Cov ~
S3-Cov preserves the quotient by o € Z/27Z, that is we have a commutative diagram

G-Cov — S3-Cov X o

NS I
Covs X/o o/°

We are ready for the proof of the main theorem of this subsection.

Proof. (of Theorem 5.3.5) We need to prove that A is well defined. Let ® = (F,d) € Cs.
We have that x = A(®) € YV and we have to prove that x satisfies the conditions of 5.2.8.
We can therefore work locally and assume we have a basis y, z of F. If we write § as in
(5.3.3), the parameters associated to x (see 5.2.10) are

a,byc,d=—a,e,f = —c,w=1,A=—-D=(ac+be)/2, B=c*—ae, C =—a®>—bc
It is easy to check that all the conditions in 5.2.8 are satisfied. Moreover
ms = A* + BC = —(AD — BC) = —det

So A(®) € G-Cov and, by definition, A(®) € U,

Conversely, if x = (£, F,m,a,3,(—,—)) € U,, taking into account relations (5.2.8)
and the fact that locally w is invertible, we have that tr 3 = 0. So (F,éd3) € C3. Denote
by A the map A: U, — C3 defined in the statement. Clearly A o A ~ id. For the
converse, consider

((—,—),idr): AoA(x) = (det F, F,ms, as, B, idget 7) — (£, F,m,c, B, (—, —)) = x where 6 = dg

In order to conclude that the association above defines an isomorphism A o A ~ id, it
is enough to prove that it is well defined. The only non trivial condition to check is the
commutativity of the following diagram.

det F® F — F
<*,*>®id}-l Jid;
LOF —~—F

Working locally, the commutativity of the above diagram is equivalent to the condition
a5 = wa, which can be easily verified.

Now assume we are over R3. The map G-Cov — Covy ~ (3 extends the map
U,, — C3 defined in the statement. Therefore Covy ~ C3 — U, C G-Cov is a section
of such map. O
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5.3.2 The locus where a: L ® F — F is never a multiple of the identity.

Define U,, as the full substack of G-Cov of objects x = (£, F,m,«a, 3, (—, —)) such that
a: L®F — F is never a multiple of the identity, i.e. such that « is not a multiple of
the identity after some base change. We want to prove the following:

Theorem 5.3.9. Let R = R[m,a,b]. Then
(Ru R27 m,c, Ba <_7 _>)
where

B(e?) = aeq + beg

_ (0 m . _ _(er,e1) = (e2,e2) =0
4= < 1 0 )’ Bleres) = —mber — aez; (e1,e2) = —(ea,e1) = mb? — a?

B(e3) = maey + mbey

is an object of G-Cov(R). The induced map A3 — G-Cov is a smooth Zariski epimor-
phism onto Uy. In particular U, is a smooth open substack of G-Cov.

Before proving this Theorem we need two lemmas.

Lemma 5.3.10. Let F be a locally free sheaf of rank 2, L be an invertible sheaf, both
over T and a: L® F — F be a map. Let also k be a field, Speck — T be a map and
p € T the induced point. If a ® k is not a multiple of the identity, then there exists a
Zariski open neighborhood V' of p in T and y € Fy such that Ljyy = Oyt and y, a(t @y)
is a basis of Fly.

Proof. If the statement is true when T = Speck’, for some field &', then it follows in
general by Nakayama’s lemma. So assume that 1" = Speck and, by contradiction, that
such a basis does not exist. It is easy to deduce that any vector of F is an eigenvector for
«. By standard linear algebra we can conclude that « is a multiple of the identity. [

Lemma 5.3.11. Let x = (£, F,m,a,3,(—,—)) € Y and y € F be such that L = Or
and y,z = a(y) is a basis of F. Then x € G-Cov if and only if the associated parameters
(see 5.2.10) of x with respect to the basis y,z are

a,b,c=—-mb,d=—a,e=ma,f =mbw=mb*>—a®>, A=D=0,B=m,C =1
In this case x € U, .

Proof. First of all note that, if the associated parameters of x are as above, then they
satisfy equations (5.2.7). Therefore x € G-Cov and, by definition, « is nowhere a mul-
tiple of the identity, i.e. x € U,. Consider now the inverse implication and denote by
a,b,c,d,e, f,w, A, B,C, D the parameters associated to y with respect to the basis vy, z
of F. By definition of 4, z we have A = 0 and C = 1. Moreover m = A? + BC' = B and

C(A+D)=0 = D=0
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b(A+D)+Cla+d)=dA+D)+Clc+f)=0 = d=—a, f=—c

(2aA+bB+cC)=(2cA+dB+eC)=0 = c¢=—mb,e =ma

a’ +bec=—-wC = w=mb>—d’

O

Proof. (of theorem 5.3.9). By 5.3.11 and 5.3.10, U, is an open substack of G-Cov,
X € Uy(R) and the induced map 7: A% — U, is a Zariski epimorphism. It remains
to prove that m is smooth. Let T 25 Uy, be a map and consider the fiber product
Z = T xy, A3. We have to show that Z is smooth over T. In order to do that,
since 7 is a Zariski epimorphism, we can assume to have (m,a,b) € Or such that
m(m,a,b) = x. Let V be a T-scheme. An element of the set Z(V) is a sequence
® = (m/,d b, \ u,v,w,2) € O} such that, if we set g = ( ZZ Z ), then ¢g € Gly v,
A € O and (X, 9¥g) is an isomorphism 7(m/,a’,b") — m(m,a,b). We claim that the
map of T-schemes

i: Z — A% X Gy, i(m/ a6\ u,v,w, 2) = (N, u, w)
is an open immersion. If we set
v(u,w) = Admw, z(u,w) = Aw

the condition 15! o a o (A ® ¥a)(e1) = ez is equivalent to v = v(u,w), z = 2(u,w).
Since A, ¢ determine m’,a’, b’ and A\, u,w determine \,1)p, we can conclude that i is a
monomorphism. Define U C AZ x G, as the open subscheme where uz(u, w) — v(u, w)w
is invertible. This is just the expression of dettg. Therefore i(Z) C U. Consider

B _(u v(u,w)
now & = (A u,w) € U and define ¢¢ = ( w 2w w)
Ve € Glyy. In particular there exists X' = (Oy, 0%, m/, o/, 3, (—,—=)") € Ua(V) such
that (A, 1¢): X’ — m(m, a,b) is an isomorphism. Since by construction

). Note that by construction

o/(e1) =1y oo (A®va)(er) = en

from 5.3.11 we see that there exists m’,a’,’ € Oy such that 7(m/,d’,b') = x'. In

particular ® = (m/, d’, b', X\, u, v(u, w), w, z(u,w)) € Z(V) and i(P) = &. O
5.3.3 The locus where 3: Sym? F — F is never zero.

In this subsection we work over R3 = Z[1/6]. Define Ug as the full substack of G-Cov of
objects x = (£, F,m,a, 3,(—,—)) such that 3: Sym? F — F is never zero, i.e. such
that g is not zero after some base change. We want to prove the following:
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Theorem 5.3.12. Let R = R3w, A,C|. Then
(R7 R27 m, o, 67 <_7 _>)

where

(A wC? ) B(e%) = ez, fBle1e2) = —wCley, B(e%) = 2wAe; + wCey
TN 0 -4 ) (er,e) =w, m= A2 +wC3

is an object of G-Cov(R). The associated map A3 — G-Cov is a smooth zariski epi-
morphism onto Ug. In particular Ug is a smooth open substack of G-Cov.

Before proving this theorem we need two lemmas.

Lemma 5.3.13. Let x = (£, F,m,a,3,(—,—)) € G-Cov (resp. B: Sym?F — F),
k be a field, Speck — T be a map and p € T the induced point. If B @ k # 0 (resp.
BRk#0, (trf)®k =0 (see 5.3.3)) then there exists a Zariski open neighborhood V' of
pinT and y € Fy such that y, B(y?) is a basis of Flv-

Proof. If the statement is true when T = Speck’, for some field &', then it follows in
general by Nakayama’s lemma. So assume that 1" = Speck and, by contradiction, that
such a basis does not exist. Notice that if y € G-Cov is given, then (tr 8) ® k = 0 thanks
to 5.2.9. Choosing a basis of F we can write

a ¢ e
/8:<b —a —c>

The condition that y, 3(y?) are dependent for all y € F is equivalent to
bu? — 3au®v — 3cuwv® — ev® =0 Yu,v € k

In particular, choosing (u,v) € {(1,0),(0,1),(1,1),(1,—1)), we see that b = e = 3a =
3¢ = 0 and therefore g = 0, since 3 is invertible. O

Lemma 5.3.14. Let x = (L, F,m,a,3,{(—,—)) € Y and y € F be such that L = Or
and y, z = B(y?) is a basis of F. Then x € G-Cov if and only if the associated parameters
(see 5.2.10) of x with respect to the basis y,z are

a=0b=1,c=—-wC,d=0,e =2wA, f =wC,w,A,B=wC? C,D=-A
In this case x € Ug.

Proof. First of all, it is easy to check that, if the associated parameters of x are the ones
listed in the statement, then they satisfy equations (5.2.7). Therefore x € G-Cov and,
since B(y?) # 0 after all base changes, x € Us.

Assume now that y € G-Cov. By definition of the basis y, z, we have a = 0 and b = 1.
Using relations (5.2.7), we also have

bla+d)=ala+d)+blc+f)=0 = d=—-a=0, f=—c
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b(A+D)+C(a+d)=0 = D=-A
a?+bc=—-wC, ac+be =2wA = c=—-wC, e =2wA
20A+bB+c¢C =0 = B=uwC?
O

Proof. (of theorem 5.3.12). From 5.3.13 and 5.3.14 we see that Uz is an open substack of
G-Cov, that (R, R*,m,a, 8, (—, —)) € Uy(R) and that its induced map 7: A3 — Ug is a
Zariski epimorphism. It remains to prove that « is smooth. Let T X Up be a map and
consider the fiber product Z =T xy, A3. We have to show that Z is smooth over T'. In
order to do that, since 7 is a Zariski epimorphism, we can assume to have (w, 4,C) € Op
such that m(w, A, C') = x. Let V be a T-scheme. An element of the set Z (V') is a sequence

u v

P = (', A", B',\, u,v,w, z) € OF such that, if we set ¢ = < w s >, then ¢g € Gla v,
A € O and (A, ¢g) is an isomorphism 7(w', A’,C") — m(w, A,C). We claim that the
map of T-schemes
it Z — A2 x G, i(w, A, C" N u,v,w,2) = (N u,w)
is an open immersion. If we set
v(u, w) = 2ww(Aw — Cu), z(u,w) = u? + wCuw?

the condition ¢q_>1 o B o (Sym?vg)(e?) = ey is equivalent to v = v(u,w), z = z(u, w).
Since A, 1 determine w’, A’,C" and \, u,w determine \, e, we can conclude that i is a
monomorphism. Define U C A% x Gy, as the open subscheme where wz(u, w) — v(u, w)w
is invertible. This is just the expression of detg. Therefore i(Z) C U. Consider

B o u v(u,w)
now £ = (A\,u,w) € U and define ¢y = ( w 2w w)
Ve € Gloy. In particular there exists X' = (Oy, 0%, m/, o/, B, (—,—)") € Us(V) such
that (A, ¢¢): X' — m(w, A, C) is an isomorphism. Since by construction

B'(e) = vg' o B o (Sym?ys)(e]) = ez
from 5.3.14 we see that there exists w’, A’,C" € Oy such that w(w’; A",C") = x'. In
particular ® = (o', A", C", \, u, v(u, w),w, z(u,w)) € Z(V) and i(®) = &. O

>. Note that by construction

5.3.4 The regular representation and the stack of torsors B(us x Z/27).

We want to describe the regular representation R[G], as an algebra, and the stack BG
of G-torsors. By 4.2.32, the G-algebra R[G] is associated with the forgetful functor
Q: Loc®R — LocR. By the theory of representation of G and taking into account
how we have associated with a functor the object of G-Cov, it is easy to deduce that the
sequence x = (L, F,m,a, B3, (—,—)) € G-Cov(R) associated with € is given by

a(ly®@v) =—v; | B}) = vy, Blurvz) =0, B(v3) = v
a(1A®vg):v2 ’ <111,112>:(—1/2)1A7 m(1A®1A):1

where I = {R, A, V}.

L=AF=V;
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Definition 5.3.15. Given ® = (F,J) € C3, we define the discriminant map Ag: (det F)? —
Or as the determinant of the map F — FV induced by ns: Sym?F — Op. Given

x = (L, F,m,a,B,(—,—)) € G-Cov we define the map A,: (det F)? — Or as the
determinant of the map 7 — F" induced by (—, —)y: Sym? F — Or.

Remark 5.3.16. The map A, coincides with minus the composition
2 <_7_>®2 2 m
(det F)* ——— L£* — Or
Moreover, if tr3 = 0, then A(]:,(gﬁ) = 4A, thanks to 5.3.5. For the first claim, we
can argue locally, i.e. choosing a basis y, z of F, setting £L = Op and considering the
parameters associated with y. In this case

AX = (ya y)(Z,Z) - (y,2)2 = —BCw2 — A2 2 — —w2m

Theorem 5.3.17. An object x = (L, F,m,«, 3,{(—,—)) € G-Cov (resp. € S3-Cov over
Rs3) corresponds to a G-torsor (resp. Ss-torsor) if and only if the maps

m: L* — Op, (—,—): det F — L

are isomorphisms, or, equivalently, A, : (det F)2 — Or is an isomorphism. In this
case: « is an isomorphism, B,(—,—) are surjective and trf = tra = 0. Moreover
BG C U,, Uy and, over Rz, BG C Ug. Finally the map A of Theorem 5.3.5 is an
isomorphism from the full substack of C3 of objects ® such that Ag is an isomorphism to
BG.

Proof. The claims about S3 follows from the same claims about G because, over R3, the
isomorphism G-Cov ~ S3-Cov preserves the torsors. Let € be the functor associated
to x. Since G is super solvable, by Theorem 4.2.42, x corresponds to a G-torsor if
and only if m: L2 = Q4 ® Q4 — Or and (—,—): FQ F = Qy @ Qyv — Or are
surjective. The first condition says that m is an isomorphism and, in particular, that « is
an isomorphism. Moreover it is easy to check, locally, that in this case (—, —) is surjective
if and only (—, —) is an isomorphism. By definition of A, this map is an isomorphism
if and only if both m and (—, —) are isomorphisms. Except for the last sentence of the
statement, all the other claimed properties follow by checking them on R[G].

Since BG C U, and A is an isomorphism, we get an isomorphism A~'(BG) —
BG and, by 5.3.16, A"}(BG) is the substack of C3 of objects ® such that Ag is an
isomorphism. ]

Remark 5.3.18. Let ® = (F,9) € C3, @lp = Op @ F be the algebra associated with ®
(see 5.3.7) and assume to work over R3. Then det @ ~ det F and the determinant of
the map o7 — 3" induced by the trace map tryy 1 @o — O coincides with Ag.
In particular g is étale if and only if Ag is an isomorphism.

Corollary 5.3.19. Set F = R? with basis ey, es and consider 6: Sym3 F — det F
given by 6(e3) = —6(e3) =1 and 6(e1e3) = §(eZez) = 0. Then

G ~ Aute, (F,9)
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Assume now that the base scheme is R3. Then the map BG — Covs, obtained by taking
invariants by o € Z/27, is an isomorphism onto the locus Ets of étale degree 3 covers.
In particular

G = Autogy, (R3[t]/(£° - 1))

Proof. For the first claim, it is enough to note that A(F,d) induces the G-cover R[G].
For the second one, assume we work over Rz and let & = (F,d) € C3. Thanks to 5.3.18,
the map A of Theorem 5.3.5 yields an isomorphism Ets — B G, whose inverse is the

map BG — Covs of the statement. In particular G ~ Autc,,, R3[G]? and it is easy to
check that R[G] ~ R[t]/(t3 — 1). O

Remark 5.3.20. The above corollary gives an alternative proof of the fact that BG ~ B S3
over R3 (see 2.3.11). Indeed BG ~ Ets and it is a classical result that Ets ~ BSs.
Moreover we see that the S3-torsor P corresponding to R3[t]/(t> — 1) € Ets is a (G, S3)-
torsor over R3 (see 2.3.1).

5.3.5 Irreducible components of (13 x Z/27Z)-Cov and S3-Cov.

In this subsection we want to prove that G-Cov and, over R3, S3-Cov have exactly two
irreducible components. Moreover we will show that they are universally reducible and
nonreduced. We will also describe the irreducible component of G-Cov that is not the
principal one, that is Zq.

Definition 5.3.21. Let X — T be an algebraic stack over T. We will say that X is
unwersally not reduced over T if for any base change T" — T the stack X x7 T” is not
reduced.

The theorem we want to prove is:

Theorem 5.3.22. Let R = Ra,b,c,d, e, f,w, A, B,C, D]/(relations) where the relations
are the ones given in (5.2.7). Then x = (R, R?,m, a, B, {—, —)) where

o A B 'e%:ael—i—beg, e1eg = ceq + dea, e%:eel—i-feg
"\ C D)’ e, e) =w, m= A%+ BC

is an object of G-Cov(R) and the associated map Spec R — G-Cov is a (G, x Gla)-
torsor. In particular

G-Cov ~ [Spec R/(Gy, x Gla))]

The stack G-Cov (resp. S3-Cov) is geometrically connected, universally not reduced and
universally reducible over R (resp. Rs3) and it has two irreducible components that are
geometrically irreducible.

The minimal primes of R are

Po=(a+d,c+ f,A+ D), P, =(a,b,c,d,e, f,w,B,C,A— D)
and the irreducible components of G-Cov are Zg and

Z={p=(—,—) =0 and « is (fppf) locally a multiple of the identity}
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Moreover we have isomorphisms

~

[A'/G] x BGL(L, F,p) | p: £ — O} Z
(E7]:Hu) — ([,,./—",M2,/£®id]:,0,0)

Before proving this theorem, we need some lemmas.

Lemma 5.3.23. Let L, F be respectively an invertible sheaf and a rank 2 locally free
sheaf. Then

Hom(L, Og) —e7 Hom(L ® F, F)

is a an isomorphism onto the locus of maps a: L @ F — F that are (fppf) locally a
multiple of the identity.

Proof. Clearly the map — ® F is injective and has the right image. So we have to
prove that given a: £L ® F — F which is locally a multiple of the identity, there exists
£ -5 Og such that o = p @ id. Set

pi L — Lo For 224 re FV — 0y

We want to prove that o = (u/2)®id. We can assume £ = Og, F = O% and o = Aid whit
A € Og. It is easy to check that p is the multiplication for 2, so that o = (p/2)®id. O

Lemma 5.3.24. Let k be a field. Then, up to isomorphism, the only local k-algebras A
with dimy A = 3 and dimgmyg = 2 are
A= klz]/(2%) and A = kla,y]/ (2", xy, )

Proof. Let W = Annmy. We have 0 C W C m 4. Assume first that dimp W = 1 and
let 2 € my — W. We want to prove that 1, z, 22
A~ k[X]/(X3). Consider an expression

is a basis of A. In this case we will have

a+br+cx’=0

Since x € ma, we have a = 0. In particular (b+cx) € m4 because it is a zero divisor and
again we can conclude that b = 0. Finally z ¢ W implies 22 # 0 and therefore ¢ = 0.
Assume now dimp W = 2, i.e. W = Annmy. If z,y is a basis of my then we have a
surjective map

kX, Y]/(X% XY, Y?) — A
which is an isomorphism by dimension. O
Lemma 5.3.25. Let R = R[b,w, A]/(Ab, Aw). Then
(Ra sz m, &, 57 <77 7>)

where

. < A0 > B(e?) = bea, Blerea) = B(e3) =0
N0 A) (ee) =w m=A2

is an object of G-Cov(R). The induced map Spec R — G-Cov is topologically surjective
onto the locus |G-Cov| — |Uy|.
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Proof. Set x for the object defined in the statement. A direct computation on the
relations (5.2.7) shows that y € G-Cov(R). On the other hand, since « is globally a
multiple of the identity, we also have that the image of Spec R in |G-Cov| lies outside
Uy |-

Now we have to prove that the map in the statement is topologically surjective. Let
k be a field and x = (£, F,m,q,3,(—,—)) € G-Cov(k) such that x ¢ U,. Consider
the k-algebra &/% ~ k @ F = B, where o € 7Z/27 and where the multiplication is given

by Sym? F M) k @& F. The vector space F C B is an ideal because a = Aid
for some A € k and (u,v)y, = (a(v),u) = A(v,u) = 0, because it is both symmetric
and antisymmetric. Therefore F is a maximal ideal of B and B/F = k. In particular,
from 5.3.24, B is isomorphic to either k[z]/(z3) or k[z,y]/(2?, zy,y?). So there exists a
basis y, z of F such that 3(y?) = by, B(yz) = B(z%) = 0 and therefore the parameters

associates with x with respect to this basis satisfy
a=c=d=e=f=B=C=0,D=A=)\
O

Proof. (of Theorem 5.3.22) The results about S3-Cov follow from the same results about
G-Cov. Note that Spec R represents the functor of G-equivariant structures of com-
mutative, associative R-algebras over R[G]. In particular the group H = Aut ; R[G]
of the G-equivariant isomorphisms of G-comodules preserving 1 € R acts on Spec R
and it is easy to verify that G-Cov is the quotient stack of Spec R by this group. Fi-
nally the representation theory of G tell us that H ~ G,, x Gly and therefore that
G-Cov =~ [Spec R/Gy, x Glp].

If R’ is an R-algebra, thanks to 5.2.9, we know that a + d,c + f belongs to all the
prime ideals of R ®r R’, but a + d,c+ f # 0 in R ®r R’. Therefore R and G-Cov
are universally not reduced. Since all the relations in (5.2.7) are homogeneous, R is a
N-graded R-algebra such that Ry = R. In particular Spec’R and therefore G-Cov are
geometrically connected.

We now focus on the irreducible components of G-Cov. Let R’ be a domain over R,
R' = R®%r R’ and continue to denote by Pj, P, the ideal in the statement of R’. Notice
that R'/P, = R'[A]. In particular P» is prime, A + D ¢ P, and therefore P; C Ps.
Now let P be a prime ideal of R’. We want to show that P, C P or P, C P. If
A+ D € Pthen P, CP. If A+ D ¢ P, then, taking into accounts (5.2.7) and the fact
that a +d,c+ f € P, it is easy to check that P, C P. Since R/, # 0, w is not nilpotent,
so there exists a minimal prime P’ such that w ¢ P’. In particular P, C P’ and therefore
P, C P'. If by contradiction P’ is the only minimal prime, i.e. Spec R is irreducible,
then P’ C P, and therefore P; C P,, which is not the case. In particular there exists
a minimal prime P” such that P” C P,. Again if P; C P” we find a contradiction, so
P, C P” and P, = P” is a minimal prime. So Spec R is reducible and, by 3.2.10, the
same conclusion holds for G-Cov. Moreover, having considered an arbitrary base change
to a domain, it also follows that Spec(R/P,) and the closed substack of G-Cov induced,
which is Z, are geometrically an irreducible component. We want now to show that
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G-Cov has exactly 2 irreducible components, namely Z4 and Z. In particular, by 3.2.10,
it follows that P’ and P, are the only minimal primes of R. Moreover, since P’ is the
only minimal prime over P;, we can also conclude that /P; = P’.

Let Z5 be the closed substack Z defined in the statement and Z; the closed substack
where « vanishes. If R’ is the algebra defined in 5.3.25, we see that | 21| and | 2| are
the image of, respectively, Spec(R’/(A)) and Spec(R'/(b,w)) under the map Spec R’ —
G-Cov. In particular |Z;| and |25 are irreducible and |G-Cov| = |Uy| U |Z1] U |Z2].
Denote by U3 the open locus where 3 is invertible, i.e. Us = Spec R3 xr G-Cov and
by Ug the locus where 3 is never 0 and 3 is invertible. Although we are working on R,
Up C Us is exactly the stack considered in 5.3.12. Since BG C U,, ) # BG NUs C Up
and both U, and Ug are irreducible thanks to 5.3.9 and 5.3.12, we can conclude that
|Ua] = [Us] = |2Zc|. On the other hand |Us| N |Z1| # 0, because it contains the algebra
locally given by a = (—,—) =0 and a=c=d=e = f =0, b =1, which is well defined
thanks to 5.3.25. Therefore | 21| C [Us] = |Zg|. In particular |G-Cov| = |Z¢| U |Z| and,
because it is reducible, Z5 and Z are the only irreducible components of G-Cov.

The last isomorphisms follows from 5.3.23. In order to prove that Zg is geometrically
irreducible, it is enough to prove that, if k is a field over R, then | Zg xk|N|Zxk| C |Zaxk|-
The stacks Z5 X k and Z x k are induced by Spec(R/v/P;) ® k and Spec(R/P) ® k
respectively, whose intersection is the point where m = o = 8 = (—,—) = 0. But
Spec R ® k is a cone with this point as vertex and therefore any irreducible component
of Spec R ® k must contain it.

Finally the fact that P; is a prime can be checked using the software Macaulay2: if

I = (2aA+bB + c¢C,2cA — aB + eC, a® + be + wC, ac + be — 2wA, ¢* — ae — Bw)

as ideal of R’ = Z[a, b, c,e,w, A, B,C|], we have R/P; ~ (R'/I)3, where (—)2 denotes the
localization by 2 € Z, and Macaulay?2 tells us that I is a prime ideal of R'.
O

5.3.6 The main irreducible components Z,,.7/2z) and Zg,.

In this subsection we want to give a more precise description of the irreducible component
Zq of G-Cov and, consequently, of Zg, C S3-Cov over R3. In particular we will have to
consider maps £ ®@ F — F whose trace is zero (see 5.3.2) and we first want to describe
them.

Remark 5.3.26. Let N" and F be respectively an invertible sheaf and a locally free sheaf
of rank 2. Given a map a: N ® F — F, we have a factorization

SRPRG—— als®q)p — a(s @ p)q
NRFQF Sym? F

N® det/]-'
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that yields an isomorphism

Homy,_o(N @ F,F) — Hom(N ® det F, Sym? F)

u v
< e (v —2u —w)
w —u

(5.3.6)
where the last row describes the behaviour of the map if ' = Op and a basis y, z of F
is given.

We want to introduce also a different description. In order to do that we note that the
pairing Sym? F ® Sym?(FY) — Or defined by uv @ &n — &(u)n(v) +n(w)é(v) induces
an isomorphism

Sym? FVY (Sym? ]__)v
(y*)27 y*z*, (Z*)2 —s 2(y2)*’ (yz)*, 2(22)*

where, again, the last row expresses the behaviour of the map if a basis y, z of F is given.
The composition

Sym? F ~ Sym?(F¥ @ det F) ~ Sym? F¥ @ (det F)? ~ (Sym? F)" @ (det F)?

yields an isomorphism

Hom(N ® (det F)2, Sym? F) — Hom(Sym? F,N 1)

(uw v wr——2w —v 2u) (5.3.7)

where the last row describes the behaviour of the map if ' = Op and a basis y, z of F
is given.

Notation 5.3.27. We continue to keep notation introduced above: given ¢: N ®@det F? —
Sym? F we will denote by ¢: Sym?F — N ! the associated map. Moreover we will
also denote by = the inverse of —: given n: Sym? F — N ! the associated map will
be ij: N @ (det F)? — Sym? F.

Remarks above motivate the introduction of the following stack. Define the stack X
whose objects are sequences (M, F,d,(,w) where M is an invertible sheaf, F is a locally
free sheaf of rank 2, w is a section of M and ¢, ( are maps

§: Sym® F — det F, ¢: (det F)? ® M —» Sym® F
satisfying the following conditions:

1) the composition

(det FP’@ M@ F Lo, Sym? F @ F — Sym® F 2y det F (5.3.8)

is zero;
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2) the composition
Sym? F -5 M1 2 0g (5.3.9)
coincides with ns (see 5.3.27 and (5.3.2)).
Given an object x = (M, F,0,(,w) € X we define L, = M ®@ detF, a,: L, ®

F — F the map obtained from ¢ using (5.3.6), m, = —detay: Ei — Or, By =
Bs: Sym? F — F (see (5.3.1)) and finally (—, —), = w®idge; 7: det F — M@det F =
Ly.

Remembering the notation introduced in 5.3.3, we want to prove the following Theo-
rem.

Theorem 5.3.28. The main irreducible component Zg of G-Cov is the closed locus of
G-Cov of objects (L, F, m,a, B,(—,—)) such that

tra: L— Op and tr3: F — Op

vanish. Moreover we have an isomorphism of stacks

X Za
X = (Ma‘F7 6,C,W) = (‘CX"F7 mX)axvﬁxv <_7 _>X)

Notice that, again, the above result continue to hold if we replace Zg by Zg, and
we assume to work over Rj3. Before proving this Theorem we want to give an explicit
description of the objects of X (and a posteriori of Z¢) such that w € M is an effective
Cartier divisor, i.e. the map Op —= M is injective. This will be helpful when we will
have to study G-covers whose total space is regular.

Given a scheme 7', denote by Z,,(T") the category whose objects are sequences (M, F, J,w),
where M is an invertible sheaf, F is a rank 2 locally free sheaf, § is a map 6: Sym?® F —
det F and w is a section of M such that Og —= M is injective and such that the zero
locus of n5: Sym? F — Og contains the zero locus of w, or, equivalently, such that

Im s g Im(./\/l_l w—v> OT)

With an object x = (M, F,d,w) € Z,(T) we associate the unique map ¢y : (det F)?®
M — Sym? F such that the associated map Cy (see 5.3.27) is a factorization as in

Sym? F *§X*> M1
ns J""v
\ S

Theorem 5.3.29. Let T be a scheme. The association

Z,(T) Zaq(T)
X =(WM,F,ow)r—— (M,F,0,(,w)
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is an equivalence of categories onto the full subcategory of Z¢(S) where w: Og — M s
mjective.

By Theorem 5.3.28, we can define a forgetful map A: Zg — C3 (see 5.3.1), that,
when 3 is invertible, is the restriction of the map G-Cov — Covs obtained by taking
invariants by o € Z/2Z. We have already seen (5.3.5) that A has a section. On the
other hand, if x = (F,6) € C3(T") and we denote by Z, the fiber of Z,(T) — C3(T),
i.e. the subcategory of Z,(T) of objects ¢ € Z,(T") such that A(¢) = x and morphisms

& -5 ® such that A(y) =1id, , from 5.3.29, it easy to deduce the following:

Corollary 5.3.30. Let T be a scheme and x = (F,6) € C3(T'). Then Z,, is a set, i.e.
there exists at most one isomorphism between two of its objects, and the following maps

Im(./\/l_l _w_) OT) ¢ } (Mafa 67("))
{ invertible sheaves of ideals N C Or } =
such that Imns C N X

N S (NTLFL6)

are inverses of each other.
We will prove Theorems 5.3.28 and 5.3.29 just after the following lemma.

Lemma 5.3.31. Let x = (L, F,m,a,B,(—,—)) € Y such that tra« = tr5 = 0 and
set M = L ®@det F~L. Let also (: M ® (det F)? — Sym? F the map associated with
a through the isomorphism (5.3.6) and § = g: Sym> F — det F (see (5.5.1)). If
L=0r,y,z is a basis of F and we use notation from 5.2.10, we have equivalences

2aA+bB+cC =0

the map (5.3.8) is zero <= fo( =0 << { 2A+eC —aB=0

a? 4 be = —wC

the map (5.3.9) coincides with ns <= ac + be = 2wA

2 — ae = Bw

Proof. The conditions tra = tr = 0 means that a +d =c+ f = A4+ D = 0. Note that
we have expressions

¢ = By? —24Ayz — C2%, { = =20(12)" + 2A(yz)* + 2B(2)*
thanks to (5.3.6) and (5.3.7). In particular
B(¢) = (aB — 2cA —eC)y + (2aA+ bB + cC)z
and, by definition of dg, the composition 5.3.8 is given by
(B Ay + (BC) Az)z* = —(2aA+bB + cC)y* + (aB — 2cA — eC)z*

Therefore the first equivalence is clear. For the second one, note that the map 5.3.9 is
just w(. Therefore the last equivalence easily follows taking into account the expression
of ns given in 5.3.4. O
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Proof. (of theorem 5.3.28) The result follows easily from 5.3.22; 5.3.31 and the local
conditions (5.2.7), taking into account that tra = tr8 = 0 means that, locally, the
relations a+d =c+ f = A+ D = 0 hold. O

Notation 5.3.32. We identify the stack X with the stack Z5. Given x = (M, F, ¥, (,w) €
Zq we will continue to denote by L, m,, oy, By, (—, =)y, (—, —)y the objects associated
with x. Moreover we will often omit the (—), if this will not lead to confusion.

Remark 5.3.33. Given xy = (M, F,d,(,w) € Zg, we want to show an alternative way of
retrieving the map m,,: Ei = M? ® (det F)? — Og, which will be useful in the next
chapter. Indeed it is easy to check locally that the following composition is just —4m,.

M2 @ (det F)?2 M2 @ Sym? F MO v o ML~ 0

Proof. (of Theorem 5.3.29) If (M, F,d,(,w) € Z(T) is such that w is injective, then
x = M, F,6w) € Z,(T) and ¢ = (,, because by definition w" o ¢ = 7. Conversely,
given x = (M, F,6,w) € Z,(T), we need to prove that & = (x,¢,) € Z¢(T). By

construction the condition w” o (, = n; is satisfied. Given 3 = (5 and taking into
account 5.3.31, it remains to prove that § o ¢, = 0. Note that the composition

w®id (404 7)2

(det F)?2 M & (det F)? 25 Sym? F
is just 75 (see 5.3.27). Since Oy —= M is injective, we only need to show that o5 = 0.
Taking into account the local descriptions (5.3.7) and 5.3.4, locally we have:

B(1is) = (¢ — ae)(ay + bz) — (ac+ be)(cy — az) + (a* + be)(ey — c2)
= [(c* — ae)a — (ac + be)c + (a® + be)e]y+
(2 — ae)b + (ac + be)a — (a* + be)d]z =0

5.4 Normal and Regular (u3 x Z/27Z)-covers and Ss3-covers.

In this section we want to study the following problem: given a regular in codimension
1 (resp. normal, regular) integral, noetherian scheme Y describe the G-covers X — Y
such that X is regular in codimension 1 (resp. normal, regular). Since, as we will see,
this problem is related to the same problem for degree 3 covers, we will simply call them
triple covers. Moreover, because we want that G-torsors of regular schemes are regular
G-covers, in this chapter we assume that G is étale, that is we assume that the base ring
is R3. In other words we will work with schemes Y such that 6 € O5.. Notice that, under
this assumption, the above problems for G-covers are equivalent to the same problems
for Ss-covers.
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Remark 5.4.1. The isomorphism G-Cov ~ S3-Cov preserves the regularity of covers, that
isif X — Y is a G-cover and X’ — Y is the associated S3-cover then, if Y is regular in
codimension 1 (resp. normal, regular) then X has the same property if and only if X’ has
it. Moreover, if Y is defined over a scheme S then X is smooth (geometrically connected)
over S if and only if X’ is so. Indeed G and S5 are étale locally isomorphic over R3 and
the same conclusion holds for X and X’ (see 2.3.12). Moreover the properties of being
regular in codimension 1, normal, regular, smooth and geometrically connected are all
local and they all satisfy descent in the étale topology.

We continue to keep notation for which G-Cov and S3-Cov are identified with the
stack of data x = (£, F, m,«, 3,(—, —)) describing them. In particular anything that is
defined starting from x is automatically associated with the corresponding G-cover and
S3-cover. Moreover, as in the other sections of this chapter, we continue to use G-Cov
instead of S3-Cov, but here this is really just a notation for the stack of data y. We
introduce some loci associated with a G-cover or an Ss-cover.

Definition 5.4.2. Given x = (£, F,m,«, 5,(—, —)) € G-Cov(Y) we define:
e D,, as the closed subscheme of Y defined by m: £2 — Oy;
e D, as the closed subscheme of Y defined by (—, —): det F — L;

e Y, as the zero locus of the map a: L ® F — F, that coincides with the closed
subscheme of Y defined by L ®@ F @ FV O T o FY s Oy

Notice that we have an inclusion Y, C D,,.

Notation 5.4.3. Let Y be a scheme. Given x = (£, F,m,a,,(—,—)) € G-Cov(Y) we
continue to keep notation introduced in section 5.2. In particular we have the map
(= = )y: Sym? F — Oy and a/,, will denote the associated G-equivariant algebra.
We will also denote by X, = Spec/, and by f,: X, — Y the associated G-cover.
When xy € Z¢(Y) we will also write x = (M, F,d,(,w) as in 5.3.28 and denote by
Ly, My, iy, Py, (—, —)y its associated objects. When we have also that Oy —~5 M, or,
equivalently (—, —)y, is injective, i.e. x € Z,(Y), we will write x = (M, F,0,w) as in
5.3.29 and denote by (, its associated object. We will often omit the (—), if this will not
lead to confusion. When tr § = 0, (condition that holds as soon as Y is reduced) we will
denote by d = dg and 15 the maps introduced in 5.3.1 and 5.3.2 respectively. Remember
that 75 = 2(—, —)y (see 5.3.4).

Since we will work mostly over regular local rings, we also introduce the following
notation and remarks.
Notation 5.4.4. Let (R, mpg, k) be alocal ring and x = (£, F,m,a, 3, {(—, —)) € G-Cov(R),
so that & = &/, = R® L ® F1 ® F is its associated algebra. We will denote by ¢ a
generator of £ and by y, z a basis of F and we will use the parameters associated with
x as in 5.2.10. We set o/ = R ® L, which is an algebra such that t> = m, and y, z; and
Yo, 22 the basis of F1 and Fs respectively equal to y, 2z € F. The structure of algebra of
& is given by

tyr = Ay1 + Cz1, tz1 = Byy + Dz, tys = —Ays — Cza, tzo = —Byy — Dz
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Y = ayatbze, y121 = cya—azs, 25 = eya—cza, Y5 = ay1+bz1, yazo = cy1—az1, 25 = ey —cz
y1y2 = —Cuw, Y122 = Aw + wt, 2120 = Bw

In particular the schemes D,,, D,, Y, are the Spec of, respectively, R/(m), R/(w),
R/(A,B,C,D).

5.4.1 Normal and regular in codimension 1 (u3 x Z/2Z)-covers.

In this subsection we want to describe G-covers of regular in codimension 1 (resp. normal)
schemes whose total space is regular in codimension 1 (resp. normal) and we will apply
the general theory developed in section 4.4. In particular the following result is a direct
corollary of 4.4.7. Such result can be recovered by the results proved in the following
sections, where we will describe regular G-covers.

Theorem 5.4.5. Let Y be an integral, noetherian and regular in codimension 1 (resp.
normal) scheme such that dimY > 1 and 6 € O%, let x = (L, F,m,a,,{(—,—)) €
G-Cov(Y) and denote by f: X — Y the associated G-cover (resp. Ss-cover). Then X
is reqular in codimension 1 (resp. normal) if and only if

codim D,, N Dy, > 2 and D,,, D, are reqular in codimension 1 Cartier divisors

In this case f: X — Y s generically a G-torsor (resp. Ss-torsor).

Proof. Notice that it is enough to prove the statement only for the group G. Remember
that G is a glrg over R and I = {R, A, V}. We want to apply Theorem 4.4.7. Denote
by € the functor associated with . Note that the action of G on X, is generically
faithful because we are assuming y € G-Cov. We have to consider the maps £ =
Qa4 — QuvY = LVand F = Qy — QpvY = FVY induced by m: £2 — Oy and
(=, —)y: F ®F — Oy and their determinants sy 4 =m € £L72 and sy € (det F) ™2
Theorem 4.4.7 tells us that X, is regular in codimension 1 (resp. normal) if and only if
vp(sy.4) < 1 and vy(syy) < 2 for all p € Y. We are using the convention for which
vp(0) = o0, so that the previous conditions also implies that s 4,571 7# 0. Notice that
spv =38,®s54 € (det F71 @ £)?2 ® L2, where s, = (—, —), € det F~! @ £ and that
the zero loci of sy 4 and s, are respectively D, and D,,. Therefore v,(sf4) < 1 and
vp(sfy) <2 forall p e Y means that D,, N D, N Y = @ and that D,, and D,, are
regular over the codimension 1 points of Y. In this case f is generically a G-torsor again
thanks to 4.4.7. ]

5.4.2 Regular (u3 x Z/27)-covers and Ss-covers.

In this subsection we are mainly interested in regular G-covers and Ss-covers. The
Theorem we will prove is the following.

Theorem 5.4.6. LetY be a reqular, noetherian and integral scheme such that dimyY > 1
and 6 € Oy and let x = (L, F,m,a, B,(—,—)) € G-Cov(Y). Then its associated G-cover
(S3-cover) is regular if and only if the following conditions hold:
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1) Dy, D,, are Cartier divisors and D,, N Dy, = 0;
2) Yo =0 or Y, is reqular and has pure codimension 2 in'Y;
3) D, is reqular and D,, is reqular outside Yy, .

Moreover in this case x € Ug, the locus where [ is never zero.

In the following lemmas we will work over a regular local ring R and we will consider

given an object x = (L, F,m,a, B3, (—,—)) € G-Cov(R).

Lemma 5.4.7. The map (—, —): Sym?F — R is surjective if and only if w is invertible
and a @ k # 0. Moreover in this case x lies in the locus where v is never a multiple of
the identity and Spec @/ — Spec &) is étale.

Proof. We have that (y,y) = —Cw, (y,2) = (2,y) = Aw, (z,2) = Bw. So the first claim
holds. Assume now by contradiction that o ® k is a multiple of the identity. So over
k we have B = C =0 and A = D # 0. On the other hand from (5.2.7) we see that
w(A+ D) =0and so A =D = 0. In particular we can consider y, z = «(y) as basis of
F. So

y? = yilays +bz) = —w(a —bt) € * = o € Bus()

since w = mb? — a®> = —(a — bt)(a + bt) € . O

Lemma 5.4.8. Assume that m is invertible, that « is never a multiple of the identity
and that a A € R such that \> = m is given. Then oy ~ A% as R-algebras, where
% = R ® Rv; ® Ruvg € uz-Cov(R) satisfies: v? = (a + \b)va, v3 = (a — Ab)vy. Moreover
we have v1v3 = —w, v3 = —(a + Ab)w, v3 = —(a — \b)w.

Proof. We consider a basis of F of the form y, z = a(y). Set u = % + % € 2/ and note
that it is an idempotent. Since u is pg-invariant, o € Z/27 C G yields an isomorphism
of R-algebras # = o/ Jud/ ~ o/ /(1 —u), since o(u) = 1 — u. In particular o7 ~ %2
Since o) /uty ~ R, we have that Z € u3-Cov(R) and its decomposition is given by

B = R@]:l/u]:l @fg/UJ:Q

An easy computation shows that uz; = Auy; and that 2uz; = A\y; + z1. In particular
F1/uFy is generated by vy = y1 and z; = —Av;. Similarly we get that vo = yo generates
Fa/uFy and zg = Avy. It is now easy to deduce the desired relations. O

Lemma 5.4.9. Assume that dim R > 1 and that m is invertible or the map (—, —): F ®
F — Og is surjective. Then <, is reqular if and only if one of the following conditions
holds: both w and m are invertible; m is invertible and w € mp — m%; w s tnvertible and
m € mp— m%, In all of those cases a @k is not a multiple of the identity and QR k # 0.

Proof. We first want to show that we can assume that o ® k is not a multiple of the
identity. Since wtra = 0 and, if <7, is regular then @4, € Zg(R) thanks to 4.4.10, we
can conclude that tr o = 0, taking into account that R is a domain and 5.3.28. On the
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other hand, since tra« = A 4+ D, then a ® k is a multiple of the identity if and only if
a ® k =0, that cannot happen if m is invertible or (—, —) is surjective.

Case: m invertible. Without loss of generality, we can assume m = A\? for some A € R.
From 5.4.8, o/, ~ 2% and so afy is regular if and only if # is so. If w is invertible then
A is étalé over R, otherwise £ is regular if and only if

—(a—Ab)w = (a — \b)*(a+ \b) = (a — Ab)(a + Ab)? € mp —m%

This happens if and only if only one between (@ — Ab), (a + Ab) is in mg — m%, which is
equivalent to w € mp — m%.

Case: (—,—) surjective. By 5.4.7, Spec @, — Spec . is étale. Therefore o7 is
regular if and only if 2 is so, which is equivalent to the condition: m invertible or
m € mp — m%.

Finally note that, since a ® k is not a multiple of the identity, w = mb? — a? and so

bRk=0 < a,beEmp = w€m2R
O

Lemma 5.4.10. Assume that dim R > 1, that m is not invertible and that (—, —): Sym? F —
R is not surjective. If <7 is reqular, then f @k # 0, a ® k = 0 and w s invertible. If
such conditions are satisfied and we choose a basis y,z = B(y?) of F as in 5.3.12, then

gty 1s reqular if and only if A,C are independent in mR/m%.

Proof. Note that @, is local with maximal ideal mg, = mr® LB F1 & Fa. Set & = ),
T = md/m?of, G, = d Qk, T, = myfk/mifk We claim that there exists an exact
sequence

0—>mR/(mRﬂmi¢) — T — T, —0

Indeed Ker(T — Tx) = mpe/(mre/ N m2,) = Q and mg/(mr N m?%,) — Q. On
the other this map is surjective since mpL ® mprF1 & mprFa C mi{ Nmpre/. We also
have mg N m?, = (m%, m,Im(—, —),) because m?, is a sub G-comodule of &/. Since
dim .o/ = dim R, if we denote by W the k-vector subspace of mR/m% generated by m
and Im(—, —),, we can conclude that

& regular <= dimy, T < dimg W
Notice that
T = Qo ® Q1 ® Q2 with Qo ~ k/(w) and Q1 ~ Q2 ~ F @ k/(Im(a ® k), Im(8 ® k))

Indeed T is a G-comodule and also a pz-comodule, thus the decomposition with the @;.
Moreover o € Z/2Z yields an isomorphism @1 ~ ()2 and the relation y;22 — z1y2 = 2wt
implies that Qo = L£/(wt). The last isomorphism follows because mi{k N(F k) =
(F2,LFY).

Assume that 8 ® k = 0. In particular Im(—, —), € m% and therefore W = (m).
On the other hand, since m € mpg, o ® k is not surjective and therefore Q1,Q2 # 0.
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In conclusion dim; W < 1, while dimg 7 > 2 and we see that &/ cannot be regular if
B®k=0.

We now assume that 8 ® k # 0 and, thanks to 5.3.13, we choose a basis 3,z = 3(y?)
for F as in the statement. Moreover, thanks to 5.3.14, the parameters associated with x
satisfy a =0, b=1, c = —wC, e = 2wA, B=wC?, D =—A and m = A? + wC?. Since
B(y?) = z we see that Q1 ~ k/(A,wC). Moreover by definition W = (A% wA,wC).
If w € mpg, it follows that A € mpg, since m € mpg. In this case dim; W < 1, while
dimg T > 2. In particular if & is regular then w is invertible. By the hypothesis on
(—, —) and thanks to 5.4.7, it also follows that a®k = 0. If we assume that w is invertible
and that a® k = 0, we get dimy, T, = 2 and W = (A, C). In this case &/ is regular if and
only if dimg W > 2, which exactly means that A, C are independent in mp/m?%. O

Proof. (of Theorem 5.4.6) It is enough to prove the statement for the group G. Denote
by fy: X, — Y the G-cover associated with x. Notice that D,,, D,, are Cartier divisor
if and only if f, generically G-torsor thanks to 5.3.17, condition true when X, is regular,
by 4.4.20. In what follows we therefore assume this condition. In particular Y, C Y.
Since dimY > 1, we can reduce the problem to the case when Y = Spec R, where R is
a local, regular ring with dim R > 1. In particular we use notation from 5.4.4. We also
set I, = (A, B,C, D). The conditions in the statement become:

1) m,w # 0; m ¢ mg or w ¢ mg;
2) if I, # R then R/I, is regular and ht I, = 2;
3) wé¢ m%;m¢myif I, = R.

We split the proof in two parts, according to lemmas 5.4.9 and 5.4.10.

m invertible or (—,—) surjective. Note that both conditions imply that I, = R by
5.4.7 and the result easily follows from 5.4.9.

m not invertible and (—, —) not surjective. If 7, is regular the result easily follows
from 5.4.10. Taking into account the same lemma, we have only to show that conditions
1), 2), 3) imply that w is invertible and that 5 ® k # 0. The first one is clear by 1), since
m € mpg. In particular (—, —) not surjective implies that a ® k = 0, by 5.4.7. Assume by
contradiction that 8 ® k = 0. By the relations 5.2.7, we see that A = —D, B,C € m%.
In particular I, C m% and therefore R/I, is not regular, against condition 2). O

5.4.3 Regular (u3 x 7Z/27)-covers, Ss;-covers and triple covers.

In this subsection we want to compare regular G-covers and regular S3-covers with regular
triple covers. In particular we will show that any regular G-cover (S3-covers) induces a
regular triple cover, by taking invariants by o € Z/2Z. Conversely a regular triple cover
can be extended to a G-cover (Ss-cover), provided that a certain codimension 2 condition
is fulfilled. We will also show how it is possible to construct regular G-covers (Ss-cover)
of a smooth variety. We start introducing some loci associated to a triple cover.

Definition 5.4.11. Let Y be a scheme and ® = (F,0) € C3(Y). We define
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e Yj as the closed subscheme of Y defined by n;s: Sym2 F — Oy,

e D; as the closed subscheme of Y defined by the map Ag: (det F)? — Oy intro-
duced in 5.3.15.

When Y is integral we denote by Covi4(Y') the full subcategory of Covs(Y) of objects
(F,9) such that Y; is a proper subscheme of Y, or, equivalently, such that ns # 0.

The suffix nd in the symbol Covgd(Y) stands for 'not degenerate’. Indeed, for a triple
cover f: X — Y associated with (F,0) € Covs, the closed subscheme of Y where 75 = 0
coincides, topologically, with the locus where f has triple points (see 5.3.24). Moreover,
the complementary of the locus Djs is the étale locus of f (see 5.3.18).

We now want to state three Theorems we want to prove in this section. In oder to do
so we have to introduce the divisorial component of a subscheme:

Definition 5.4.12. If Y is a locally factorial, noetherian and integral scheme and Z is
a proper closed subscheme, there exists a maximum among the effective Cartier divisors
contained in Z. Such divisor will be denoted by D(Z) and called the divisorial component
of ZinY.

The first Theorem we will prove shows an alternative description of regular G-covers,
starting from the more simple description of Z,, (see 5.3.29).

Theorem 5.4.13. Let Y be a regular, noetherian and integral scheme such that dimyY >
1 and 6 € Oy-. Then the association

Covi(Y) ———— Z,(Y)

(]:75) — (OY(D(%))a}-757 1)

is a fully faithful section of the projection G-Cov(Y) — Covs(Y') and all the reqular G-
covers are in the essential image of I'. Moreover, if x = I'(F,d), then D = Ds — 2D(Y5)
is a Cartier divisor if Ds is so and the associated G-cover X\, — Y 1is reqular if and
only if Y5 is reqular, Ds is a Cartier divisor, D N D(Ys) = (), Ys N D is empty or has
pure codimension 2 and D is regular outside Ys. In this case D, = D(Ys), D = Dy,
Yo=YsND,, and Ys = D, UY,.

The following Theorem shows how the correspondence among regular G-covers, regular
Ss3-covers and regular triple covers behaves.

Theorem 5.4.14. Let Y be a regular, noetherian and integral scheme such that dimY >
Land6 € Of. If f: X — Y is a reqular triple cover, then Y5 = D(Y5)UY,, where Yy is
a closed subscheme of pure codimension 2 if not empty and D(Y5) is reqular. Moreover f
extends to a regular G-cover (Ss-covers) if and only if Yy is reqular. More precisely the
maps G-Cov, S3-Cov — Covs obtained by quotienting by o € Z /27 induce isomorphisms

X X/o
lar G- Y
{regular CT‘)ZWS over Y’} —— [ regular triple covers (F,0) over'Y
- such that Ys is reqular

{regular S3-covers over Y}
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Moreover the inverse of the upper morphism is the functor I' introduced in 5.4.13.

We will also prove an existence theorem for regular G-covers and Ss-covers, but we
need the following definition first.

Definition 5.4.15. Let k be a field, Y be a k-scheme and £ be a quasi-coherent sheaf
over Y. The sheaf £ is called strongly generated if, for any closed point g € Y, the map

HO(Y,€) — £ ® (Oyp/m})

is surjective. The sheaf & is called geometrically strongly generated if it is strongly
generated over the geometric fiber Y x k.

The last Theorem we want to prove is the following:

Theorem 5.4.16. Let k be an infinite field with chark # 2,3, Y be a smooth, irreducible
and proper k-scheme with dimY > 1 and F be a locally free sheaf of rank 2 over Y.
If &€ = M(Symg F,det F) is geometrically strongly generated then there exists § € &
such that the triple cover associated with (F,d) € C3(Y') extends to a G-cover (Ss-cover)
Xs — Y with X5 smooth and Ys = () or codimy Y5 = 2. Moreover, if Y is geometrically
connected, then X is geometrically connected if and only if det F o Oy and H(Y, F) =
0.

The following Proposition shows that the hypothesis of the above Theorem can be
easily satisfied.

Proposition 5.4.17. Let Y be a projective scheme over a field and € be a coherent sheaf
over'Y. Then

E(—1) globally generated — & geometrically strongly generated

In particular if Y and F are as in Theorem 5.4.16, with Y projective, then F(—n)
satisfies its hypothesis for n > 0. Moreover considering F = Oy (—1)2, so that £ =
(Sym? F)” @ det F ~ Oy (1)3, we obtain:

Corollary 5.4.18. Let k be an infinite field with chark # 2,3. Then any smooth,
projective and irreducible (resp. geometrically connected) k-scheme Y with dimY > 1
has a G-cover (S3-cover) X — Y with X smooth (resp. smooth and geometrically
connected).

The rest of this section is dedicated to the proofs of what claimed above. Note that all
the results for S3-covers are just a consequence of the same results for G-covers, thanks
to 5.4.1 and 5.3.8. Therefore we will focus only on G-covers. We want now to argue why
the concept of divisorial component introduced above is well defined.

Remark 5.4.19. Let Y be a locally factorial, noetherian and integral scheme and Z be
a proper closed subscheme, defined by the sheaf of ideals Z. We want to show that the
divisorial component of Z in Y exists, or, equivalently, that the set of invertible sheaves
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of ideals of Oy containing 7 has a minimum £Z. Moreover we prove that, if p € Y and
T, = (fi,..-, fr) € Oy, then EZI) = (ged(f1,.--, fr)). The key point for proving this
fact is that if 7, N are sheaves of ideals of Y, with N invertible, then

JCN < J,CN,forallge YW

In particular it is easy to check that D(Z) is induced by the Weil divisor
> dimy(g) (Oyq/Zy)q
qgey ()
Remark 5.4.20. Let ® = (F,§) € C3(Y). Its associated algebra is @y = Oy & F with
multiplication § = fs: Sym? F — F and 5s: Sym?F — Oy (see 5.3.7). The map
(det F)? 2 Sym? F 5 0y

coincides with the map Ag: (det F)? — Oy defining Ds. Indeed tr o (4o v) = 3n5(uv)
for all u,v € F and, if y, z is a basis of F, then

n5(s) = ns(y*)ms (%) — ms(yz)?

Since Yj is defined by the ideal (1s(y?),15(y2),ns(2%)) we see that Y5 C Ds and, if Y is
locally factorial, noetherian and integral and Djy is a Cartier divisor, then Ds — 2D(Yj)
is an effective Cartier divisor.

Assume now we have an extension (£, F,m,«, 35, (—,—)) € G-Cov of (F,0), with its

associated parameters. Since 75 = 2(—, —), (see 5.3.5) we have that 75(y?) = —2Cw,
ns(yz) = 24w, ns(2?) = 2Bw. Since Aw = Dw, we have that Y,, D, C Yj, that
|Y5| = |Ya| U |Dy| and, if Y is regular, noetherian and integral and D, is a Cartier

divisor, that D, C D(Y5). Moreover by 5.3.16, we also obtain
15 (1fs) = —4w?m

Therefore D,,, D, C Ds, |Ds| = |Dy| U |Dy,|, Ds is a Cartier divisor if and only if D,
and D,, are so and in this case Ds = D,, + 2D,,.

Proof. (of Theorem 5.4.13) By definition of Covi4(Y") and thanks to 5.3.30 we see that I
is well defined and fully faithful. By 5.4.6 we also see that all the regular G-covers of Y’
belong to Z,(Y’). Now let x = (M, F,0,w) € Z,(Y). Notice that, if X, is regular, then
Dy is Cartier and Y5 C Ds by 5.4.20. In particular (F,§) € Covi¢(Y). Therefore assume
that this condition holds and notice that I'(F,0) ~ x is equivalent to D, = D(Yj).
Assume that X, is regular or that: x = I'(F,d) and the conditions in the statement
are satisfied. By 5.4.6 and 5.4.20 we can conclude noting that: D,,, D, Ds are Cartier
divisors and D = D,,, = Ds — 2D,; D,, "D, = 0; Ys = D, UY, and Ys N D,, = Y, is
regular of pure codimension 2 if not empty, which also implies that D, = D(Y5). O
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Remark 5.4.21. Let R be a regular ring with dim R > 1, r(t) = 3+ gt +h € R[t] and set
A, = 4g% +27h2. Adapting | , Lemma 5.1] to our situation we have that R[t]/(r(t))
is regular if and only if either:

gEmR,hgémg%org%mR,Ar%m%

Proof. (of Theorem 5.4.14) We can reduce the problem to the case where Y = Spec R,
where R is a local, regular ring. Let ® = (F,d) € C3(R) be a triple cover, x =
(M, F,d,w) € Z,(R) an extension of ¢. Notice that any object of C3 has an exten-
sion to Z,(R). If ® corresponds to a regular triple cover then it has Gorenstein fibers
and, by | , Theorem 3.1], ¢ is never zero. On the other hand, if X, is regular, then
X € Ug, i.e. § is never zero, by 5.4.6. Therefore we can assume that J is never zero and
choose a basis y, z = B(y?) of F. In particular, from 5.3.14 and 5.4.20, we see that

Blyz) = —wCy, B(2%) = 2wAy +wCz, n5(y?) = —2wC, ns(yz) = 2wA, ns(2%) = 2w*C?
and m = A% + wC3. If @lp = R® F is the algebra associated to ® and we set
r(t) = 3 + 3wCt — 2wA

a direct computation shows that r(y) = 0 and therefore that <% ~ RJt]/(r(t)). Moreover
the discriminant is

A, =4-27T03C% +4-27Tw? A% = 4 - 270°m

and defines the locus Ds by 5.3.14. Notice that if ns = 0, then r(t) = t> and &/ is not
regular, while if X, is regular then ns; # 0 thanks to 5.4.13. We can therefore assume
that ® € Covid(R). We split the proof in two cases and in both we will use 5.4.21 and
5.4.20. In particular set g = 3wC and h = —2wA.

Ay regular and x = T'(F,d). We will use that A, € m% implies that g € mp and
h ¢ m%. By definition we have that D,, = D(Ys), i.e. that ged(A4,C) = 1. Notice that
we cannot have m,w € mpr or w € m%, since otherwise A,, h € m%. Therefore D, is
regular and D,, N D, = (. In particular, since |Ys| = |D,| U |Yy| and Y, C D,y,, we
have Ys = D,UY,. If m € m%, then A, € m%. In particular ¢ € mp and therefore
h € mpg, which shows that D,, is regular outside Y5. We have to show that Y, has pure
codimension 2 if not empty. So assume that A,C € mp. In particular g,h € mpg, so
A, € m% and therefore h ¢ m%. Moreover m € mp and, as we have seen, w ¢ mpr. We
can conclude that A € mp —m%. In particular R/(A) is a regular domain of dimension
dimR — 1. If ht(A,C) # 2, we must have that C' € (A), that cannot happen since
ged(A,C) = 1. In conclusion if o/ is regular then all the conditions required by the
regularity of X, (see 5.4.13) are satisfied, except for the regularity of Y.

X, reqular. We will make use of 5.4.13. In particular from it we see that I'(F, ) = x
and we have to prove that @7 is regular. Assume by contradiction that this is false.
Therefore we must have g € mpg,h € m% or g ¢ mp,A, € m%. If the last condition

is satisfied, then w,C ¢ mpg and therefore m € m%. Since (A,C) = R, in this case
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D, is not regular. So assume g € mpg,h € m%. Note that in particular Ag € m%. In
particular, if w € mpg, then m ¢ mp and therefore w € m%%, while D, is regular. So
w ¢ mp and therefore C € mp and A € m%. But this cannot happen because A, C are
independent in mp/m%. O

Lemma 5.4.22. Let k be an algebraically closed field, let (R,mp, k) be a reqular local

ring with dim R > 1 and denote by (—): R — R = R/m% the projection. Set F = R?,
F=TR and given §: Sym3 F — det F denote by <75 the Ss-cover over R obtained as

m 5.4.13. Finally set

V = Homp(Sym® F,det F), W = {y € V | 3Sym® F L det F st 5 = v and /5 not regular}
Then W is a closed subscheme of the k-vector space V with codimVW >dim R+ 1.

Proof. Since 0 varies in the arguments below, if § = (—a,b,c,e) with respect to some
basis of F, all the parameters associated with 0 (and its associated Sz-cover) will be

thought of as (polynomial) functions in a, b, ¢, e. Moreover we fix a k-basis 1,71, ..., T
of R, where x1,...,z, € mp form a basis of mR/m%. Moreover » € R will be denoted
by

r=r9-1+mT1+ - -rsTs where s=dimR, r; € k
Notice that, if 6,6" € Hom(Sym? F,det F) are such that ¢ and 5 differs by an automor-
phism of F, i.e. there exists ¢ € GI(F) such that (det ¢)¢’ = §oSym? ¢, then o7 is regular
if and only if .27 is so. Indeed the previous condition means that o/ ® R ~ @/ ® R.
Given y € F set
Vy={yeV |y, B, (4% is a basis of F}

Notice that the Vy are open subsets of V, not empty if yy # 0, and that, thanks to
5.3.13, their union covers V —{y eV | B, ®k =0}. Since {y eV | B, @k =0} C W
has codimension 4 in V/, it is enough to prove that

Codimvy w ﬂvy >s+1
for all y € F such that yg # 0. Consider now the map p: V,, — R that sends ~ to the

parameters c, e associated with v with respect the basis y, ﬂv(yQ). Note that a v € Vy
differs by an automorphism of F from (—1,0,p(y)). In particular if we set

W ={(c,e) e R | (-1,0,¢,¢) € W}

then p_l(W/) =Wn Vy. Now denote by U the open subspace of F of z such that ¥, z
is a basis of F. The map

—=2
Vy — U x R” given by y (BW(ZJQ),I?(’Y))

is an isomorphism whose inverse sends z € U, u,v € R to the v € V, given by (—1,0,u, v)

with respect to the basis y, z of F. In particular we can reduce again the problem and
. 7 W

prove that COdlmﬁz W > s+ 1. We want to show that W' = Wy U W5, where

W1 = {e? = 4¢® and cg,eq # 0}, Wa = {cp = e9 = 0 and ¢, e dependent in myg/mze}
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Remember that the parameter m associated with (—1,0,¢,¢€) is given by (e? — 4¢3)/4
and, taking into account Theorem 5.4.6, the only non trivial point to show in the equality
above is the following: if ¢, e € R are such that e = 4¢3 then there exists ¢/, ¢’ € R such
that @ =€, @ = ¢ and € # 4¢/3. Assume by contradiction that this is not possible.
Notice that e? = 4¢® implies that c, e are invertible or that e = ¢ = 0. Indeed if ¢, e # 0
and ¢ € mtR — mgl, e € mlR - ml;irl then 2¢ = 3, which implies ¢t = [ = 0. Consider
¢ =e+w, with w € m% —m%, ¢ =c. If e =0 we are fine. Otherwise, modulo m%, we
get the equality 2ew = 0 and also in this case we get a contradiction.

If we write ¢ = ¢y + ¢/, e = eg + €’ then W7 is contained in the irreducible component
of the locus {e€3 = 4c}, ege’ = 6coc’} which is not {cyp = ey = 0}, that has codimension
s+ 1. Finally it is easy to check that also W5 has codimension > s + 1. O

Remark 5.4.23. Let Y be a proper, smooth and geometrically connected scheme with
dimY > 1 over a field k with chark # 2,3 and x = (£, F,m,, 3,(—,—)) € G-Cov(Y)
such that Xy is regular. Then Xy is geometrically connected if and only if £ % Oy and
HO(Y, F) = 0. Indeed Xj is geometrically connected if and only if HO(Xsx &, O Xsxk) = k,
which means H*(Y x k, L& k) = H*(Y x k, F® k) = 0. On the other hand, this is also
equivalent to HO(Y, £) = HO(Y, F) = 0 and, since m induces an injective map £ — £},
we also have that HO(Y, £) # 0 is equivalent to £ ~ Oy

Proof. (of Proposition 5.4.17) We can assume that k is algebraically closed. Note that the
property of being strongly generated is stable for direct sums and quotients. Moreover,
if i: Y — P} is the closed immersion defined by Oy (1), then £ is strongly generated
if and only if 4, is so. Since we have surjective maps Oy (1) — £ by hypothesis and
Opp (1) — Oy (1), we only need to prove that Opm (1) is strongly generated. This

last condition means that, if p is a maximal ideal of R = k[x1,..., 2], then R/p? is
generated as k-vector space by the elements 1,x1,...,2,,. This property clearly holds
because p = (1 — a1, ..., Tm — ay,) for some a; € k. O

Proof. (of Theorem 5.4.16) Denote by V' the vector bundle over k associated with H(Y, &)
and by g: Y XV — Y and m: Y x V — V the projections. By definition of V,

there exists x = (¢*F,un) € C3(Y x V) such that, for any Speck LN V, we have
(idy x 0)*(¢*F,pn) = (F,d). Consider the G-cover f,: X, — Y x V associated with
X as in 5.3.5 and let U C V' the smooth locus of the flat map 7o f,: X, — V. We
claim that we have to prove that U # (), so that we will assume k algebraically closed.
Indeed, since k is infinite, there will exists 6 € U(k). If fs: Xs — Y is the base
change f,5: X, s — Y x {0} then, by construction, X5 is smooth and, taking into
account 5.4.14, codimy Y5 = 2 if Yy # (). Moreover det F ~ L and the last claim about
connectedness follows by 5.4.23.

Given § € V we will denote by f5: Xs — Y the base change of f, over Y x {¢}. Since
mo f, is flat, given p € X (k) and § = 7(fy(p)) we have

X regular in p <= Xj regular in p
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In particular, if Zx C X is the singular locus of X and Z = f,(Zx), then (¢,0) € Z(k)
if and only if X has a singular point over ¢ € Y. Moreover m(Z) is the complementary
of U in V. Therefore it is enough to prove that dim Z < dimV — 1,

If ¢ € Y(k), then g='(q) N Z C V is the locus of § € V(k) such that Xs is not regular
over ¢. In particular, if we denote by ¢, the map

¢q: V — E® (Oy,q/m?)

and by W, the subspace of £ ® (Oy,q/m2) of elements v such that there exists § €
¢, () for which Xj is not regular over g, then ¢, *(W,) = g~'(¢) N Z. Indeed if
§,0" € V are such that ¢4(0) = ¢4(d'), then X is regular over ¢ if and only if Xy
is so. Moreover W, is contained in the locus defined in 5.4.22, where R = Oy, and
therefore COdimg®(OY’q/m3)Wq > dimY + 1. Since ¢4 is, by hypothesis, a surjective

linear map of vector spaces, we also have codimy (¢~1(¢) N Z) > dimY + 1. Therefore
dim(g~1(¢)N Z) < dimV —dimY — 1 and

dimZ <dimY +dimV —dimY -1 =dimV -1

5.4.4 Invariants of regular Ss-covers of surfaces.

The aim of this subsection is to compute the invariants of regular Ss-covers of surfaces
over an algebraically closed field. Here and in the rest of the section by a surface over a
field, we mean a projective, smooth and integral scheme of dimension 2. The result is:

Theorem 5.4.24. Let Y be a surface over an algebraically closed field k such that
chark # 2,3 and f: X — Y be a regular Ss-cover associated with (F,0) € C3 as
in 5.4.13. The closed subscheme Y5 of Y defined by the map ns: Sym? F — Oy is the
disjoint union of a divisor D and a finite set Yy of rational points and X is connected,
that is a surface, if and only if H*(F) = 0 and Oy(—D) % det F. In this case the

mvariants of X are given by

1
K% = 6K3% +6¢1(F)? — 12¢1(F)Ky — 301)2 — 4DKy

Pg(X) = pg(Y) + 2h*(F) + h*(Oy (D) @ det F)
V(Ox) = 6x(Oy) — 262(F) + %(361(}")2 _ 3¢,(F)Ky — DKy — D?)

2
1Yo| = 3ca(F) — gD2

Before proving this Theorem we need several lemmas.

Lemma 5.4.25. Let S be a finite disjoint union of integral schemes, (L, F,m,a, 5,(—,—)) €
Za(S) and assume that B is never zero, that (—,—) =0 and that m is an isomorphism.
Then there exist an isomorphism v: L — Og whose square is m and a decomposition
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F = Hi ® Ho into invertible sheaves such that 5\71% is an isomorphism H? ~ Ho and
B\H%v Birrom, = 0. In particular

Coker f ~ H; and det F ~ H3

Proof. What we will really prove is that Im ( is an invertible sheaf, that the map £ —
End(F) induced by « yields an isomorphism ¢: £ — End(Im 3) ~ Og, that > = m,
that o/ = ao (17! ®idz): F — F is an isomorphism such that o’* = id and that the
decomposition into eigenspaces of o’ is F = H1 G Ho, where H; are invertible sheaves and
Ho = Im 3. Those conditions and the requests of the statement can be checked locally.
So assume that S is integral, that £ = Og and that we have a basis y, z = B(y?) of
F. By 5.3.14, we have B = wC? = 0, D = —A and therefore A> = m. Set = —A,
so that o/ = a/t. Replacing y by y + (C/2A)z, we get new parameters, although A
remains the same, such that B = C' = 0, i.e. such that « is diagonal. Therefore o/ = id
and H1 = (y), Ho = (z) are the eigenspaces of o’ with respect to the eigenvalues —1, 1
respectively. From relations (5.2.7) we see that a = ¢ = be = 0. Since z € Im 3, we get
e =0, b€ OF. In particular Ho = Im 3, which is invertible, ﬁ|H1®H2€BH§ =0 and ﬁl”? is
an isomorphism H? ~ Im 8 = Hs. O

We fix an integral, regular and noetherian scheme Y with dimY > 1 and an object
x € Z,(Y), x = (M, F,d,w), whose induced G-cover, denoted by f,: X, — VY, is
regular. We also denote by &/ = &/, the algebra associated with x, i.e. @ = f,.Ox,,
and by

L,m, (o, B, (—,—), (=, —) D,,,D,,,Ds,Y,,Ys

the objects associated with y according to the inclusion Z,(Y) — G-Cov(Y) (see
5.3.29) and the closed subschemes of Y defined in 5.4.2 and 5.4.11 respectively. We
will often make use of Theorems 5.4.6, 5.4.13 and 5.4.14, which yield several conditions
on the closed subschemes introduced above. In particular notice that 5 is never zero.
Therefore we will often consider basis of F of the form y, 3(32), thanks to 5.3.13, and
the correspondent parameters associated with y, given in 5.3.14.

We are going to describe two exact sequences over Y, as the first step in the compu-
tation of the invariants of X,.

Remark 5.4.26. If i: Z — Y is a closed immersion of schemes defined by the sheaf of
ideals Z and Q is a coherent sheaf on Y such that Q, ~ Oy, /Z, for any p € Y, then i*Q
is an invertible sheaf on Z and Q ~ i,:*Q.

Lemma 5.4.27. We have an exact sequence
0— (det F)2@M - Sym? F 2o F i, H® 5.0 — 0 (5.4.1)

wherei: D, — Y, j: Yo, — Y are the immersions, H, Q are invertible sheaves on D,
and Y, respectively and H3 ~ i* det F.
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Proof. We will prove that Coker 8 is schematically supported over Y5 = D, UY, and
therefore of the form i,H @ j,Q where ¢ and j are as in the statement and H, Q are
coherent sheaves on D, and Y, respectively. By 5.4.25 we can then conclude that H? ~
1" det F, since D,, is regular. We can therefore work locally, i.e. assuming that ¥ =
Spec R, where R is a local regular ring, and that we have a basis y,z = 8(y?) of F. In
particular

F/Im B ~ (Ry® Rz)/(z,cy,ey — cz) ~ R/(c,e)

So F/Imp is an invertible sheaf on Y5 = D, UY, and therefore can be written as
F/Imp ~ i, H D j.Q, where H, Q are invertible sheaves as in the statement.

By 5.3.31, we know that 3(¢) = 0. By 5.3.6, we can write ( = By? — 24yz — Cz2. If
¢ =0, then m = A% + wC? = 0, which is not the case. It remains to check that Ker 3 is
generated by (. Note that [ is generically surjective, since x is generically a G-torsor and
thanks to 5.3.17. Therefore we have that Ker 3 = (k(R)¢)NSym? F C Sym? F®k(R) and
we need to prove that if u¢ € R?, with u € k(R), then u € R. If A or C is invertible this is
clear. If A, C' € mp, then they are independent in mp/ m% and therefore different primes.
Write u = v/w with v, w coprimes. By hypothesis, we have relations vA = wr,vC = wr’,
with 7,7’ € R. If w is not invertible, any prime dividing w will also divide A and C,
which is a contradiction. O

In order to introduce the second exact sequence, we introduce the following notation.
Set B =/ ~0y &F and 1': X' = Spec# — Y. The map X,, — X' is a degree 2
cover and we denote by A the invertible sheaf over Z inducing it.

Remark 5.4.28. Notice that A C o is the eigenspace of o € Z/27Z relative to —1. In
particular

LOF2A={00s®azd®(—x)|sel, ze€F}Cd =0y DLDF & Fo

Similarly to how we have identified # = &/ with Oy @& F (see 5.3.7), we will always
identify L& F with A through the map s@x —— 0@ s®x®(—x). Note that o7, = BDA.
In particular we get a multiplication map A ® 2 A — % and it is easy to check that

mead(B—1n): Symd, A=L2GLOFOSym’F — Az A — B

Note that, in the above composition, the first map is surjective, while the second is
injective because fy: X, — Y is generically a G-torsor. Therefore we will identify the
sheaf A ® 4 A with the image of m @& a & (8 — 1) in B =0y & F.

Lemma 5.4.29. We have exact sequences
0—Q—>ARzA —i,0p, — 0, 0 — Sym?*F — Q — i, K —0 (54.2)

where i: D, — Y is the inclusion and K is an invertible sheaf on D, such that IC3 ~
i* det F.
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Proof. As explained in 5.4.28, A® %A can be identified to the image G of m@® a® (5—1ns)
in =0y &F. Set

Q =TIm((B—ns)®a: Sym> FOLIF — B) C G, H = Coker((8—mn;): Sym?F — Q)

and T = Coker(Q — G). We have exact sequences

0— Q0 —>ARzA—T —0, Sym}" —Q—H —0

We first prove that 7 ~ i,Op_. By definition we have a surjective map £2 "% G — T
whose kernel is m~1(Q). Since locally 15 = w( by 5.3.9, 8(¢) = 0 by 5.3.31 and n;s(1j5) =
—4w?m by 5.4.20 we have that (8 — n5)(1s) = 4w?m € Q, that w? € m~(Q) and
therefore that | Supp 7| C |Dy|. So T is supported in the locus where m and therefore
« are isomorphisms, in which we have G = £, Q = Imns ® F, which yields the desired
result.

We now consider H. Assume that we have already proved that H ~ i, /K, where K is
an invertible sheaf over D,,. We want to prove that K3 ~ i* det F. Let

O =Im((Sym?F & Lo F) @ Op, L 0 0p,)

Since, on D,,, a is an isomorphism and 15 = 0, we get Q = F ® Op_. Moreover we have
a surjective map Q ® Op, — Q and a commutative diagram

Symz]‘—@ODwHQ®ODWHH®ODWZ’C*>O

6@0% J l

f@(’)[)w ]/C\

where K = Coker(8 ® Op,). Thanks to 5.4. 25, K is an invertible sheaf on D, such that
K3 ~ i* det F and the surjective map K — K is an isomorphism. In order to prove that
H ~ i.K, we can work on a regular local ring R. Considering a basis y, z = 8(y?) of F
and basis 1,4y, z of Oy @& F we have

—2c —e —2¢2
B—ns = 0 c e ,e=2wA, ¢c=—-wC, B=wC? m=A?+wC?
1 0 —c

In particular det(8 — ;) = 4¢3 — €2 = —4w?m and therefore 3 — ns is injective. In
particular if both w and m are invertible, then 5 — 75 is an isomorphism and therefore
H = 0. In particular we can assume that w or m is not invertible. By definition we
have a surjective map £ ® F — Q — H whose kernel is o= t(Im(8 — 7s)). Given
z =uy+vz € L&F we want to check when there exists 2’ = wy? + gyz+ hz? € Sym? F
such that (8 —ns)(2’) = a(z), ie.

u(Ay + Cz) + v(By — Az) = (—2cw — eg — 2¢*h) + (gc + he)y + (w — he)z

185



5 (pg X Z/27)-covers and Ss-covers.

which translates in the system of 3 equations
—2cw — eg — 2¢?h =0, uA +vB = gc+ he, uC —vA = w — he
We first get w = uC' + hc¢ — vA and our equations become
—4¢2h — 2ucC + 2vcA —eg = 0, uA 4+ vB = gc + he

First note that if e = 0 € mpg, then A = 0 and if C' € mp then R/(A,C) cannot have
codimension 2. So C is invertible and, since 4w?m = —4c?, w, ¢ and m differs by an
invertible element. From D,ND,, = 0, we can conclude that both w and m are invertible.
Therefore we have e # 0. We can write

h=(uA+vB—gc)/e
and substituting in the first equation we get
g(4c® — €?) = u(42 A + 2ceC) + v(42B — 2ceA)

Now note that 4¢3 — €2 = —4w?m, 4c?A + 2ceC = 0 and 4¢?B — 2ceA = 4w?Cm and

so the above equation become 4w?m(g + Cv) whose unique solution is ¢ = —Cwv. In
particular vB — gc = 0 and our last equation is h = uA/e = u/2w. So a(uy + vz) is in
the image of 8 — ns if and only if w | u, which implies that H ~ R/(w). O

From now on we assume that Y is a surface over an algebraically closed field k. We
write 4 = ¢1(M) = Dy, c1 = c1(F), ca = co(F) and Ky = K, the canonical divisor of
Y.

Remark 5.4.30. We have uc; = —p?. Indeed from D,, N D, = 0, we get uci(£) = 0. On
the other hand we have £ ~ M ® det F.

Lemma 5.4.31. Let H be an invertible sheaf on D, such that H> ~ det .7:I®ODW. Then

2043 uK
X(H>:—TM2—7

Proof. Let u = D, = D1+---+D; be the decomposition into smooth integral components
and set H; = H® Op, and ¢: D,, — Y for the inclusion. Thanks to 5.4.25, i*L ~ Op,,
and therefore i* det F ~ i*M~!. In particular

H; ~ (det F)! @ Op, ~ M~ @ Op, ~ (Oy(~D;) ® Op,)! = degp, H; = —1D?/3

By adjunction formula we also have 2(g(D;)—1) = D?+ D;.K and moreover, by Riemann-
Roch,

20+ 3 D;.K
xp;(Hi) = —ID}/3 - D?/2 — D;. K/2 = —%Df - 2
Summing over all i and taking into account the relation p? = D? = > DZ-2 we get the
result. O
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Remark 5.4.32. Let € be a locally free sheaf of rank r and £ be an invertible sheaf over
Y. We recall the following well known formulas for the Chern classes. In particular the
last one is Riemann-Roch for surfaces.

_ r(r—1)

5 c1(L)? + (r—Der(L)er(€) + e2(E)

AA(ERL)=rci(L)+c1(E),c2(E R L)

c1(Sym? E) = 3¢ (E), co(Sym2 &) = 2¢1(E)? + 4en(€) if r =2

w(e) = Al 208 _al®K o)

Lemma 5.4.33. We have

2
Yol =32 = 1

Proof. Consider the operator

® = 2(x — x(Oy)rk)

on coherent sheaves, which is additive on exact sequences. We will apply it on the exact
sequence (5.4.1). We have ¢ (det F2 ® M) = 2c; + u and

®(det F2@M) = (2¢14+u)*—(2c14+p) K = 4ci+p+4pci —2e1 K —pK = 4ci—201 K —3p° —puK

where we have used that pc; = —u?. By 5.4.31, we get ®(i.H) = 2x(H) = —5u%/3—uK.
Moreover

®(Sym? F) = 9c — 2(2¢3 + 4¢o) — 31K = 5¢2 — 8¢y — 3e1 K
Finally, since Y, is regular of dimension 0, we obtain

2|Ya| = (4. Q) = ®(det F? @ M) — &(Sym? F) + ®(F) — ®(H) = 6cy — 4p*/3

Lemma 5.4.34. We have
2X(A ®z A) = 5¢8 — 8¢y — 3c1 K — 8u? /3 — 2uK + 6x(Oy)

Proof. Consider the exact sequence 5.4.2. Taking into account 5.4.31, the result follows
from the relations 2y(Sym? F) = 5¢7 — 8ca — 3c1 K + 6x(Oy), 2x(Op,,) = —u® — pk,
2x(K) = —5u?/3 — pk. O

Lemma 5.4.35. Let f: X — X' be a degree 2 cover between surfaces and write fOx =
Ox: & W, where W is the invertible sheaf inducing f. Then

K% = 2K%42c1(W)*—4ci (W) Kxr, pg(X) = pg(X')+h* (W), x(Ox) = x(Ox/)+x(W)

187



5 (pg X Z/27)-covers and Ss-covers.

Proof. The last two formulas are clear. Therefore we focus on the first. Set Z = f.Ox.
The map W~! — 2BV ~ f«wx/x+ induces a map

FWTh — P fawx xr — wx)xr

We want to prove that this map is surjective and therefore an isomorphism. Locally,
W= 0Oxit, t>? =m € Ox, Wt = Oxst*. Since t - t* = 1*, where t* € %", we see that
t* generates #" as a B-module. Thus f*W™! ~ wyx/x and

wx ~ frwx @y x = flux@W ) = fivy ~wy WA ~ wy, @Wewy @W?

Now note that if Z is a surface and D is a divisor of it, by Riemann-Roch formula we
have
2x(nD — Kz) =n?D?* — 3nDKz + 2K% + 2x(OZ)

If we write W = Oy (C), the result comes from the following relations
X(=Ex) = x(fiwy') = X(C = Kx1) + x(2C — Kx1) = (5% = 9CKx1) /2 + 2K%, + 2x(Ox)
X(—Kx) = KX +x(Ox) = KX + x(W) + x(Ox1) = KX + (C? = CEx)/2 + 2x(Ox/)

O

Lemma 5.4.36. Let f: X' — Y be a degree 3 cover between surfaces induced by (F,0) €
Cs(Y). Then we have

K% = 3K —4c1(F)Ky+2c1(F)*=3c2(F), x(Ox) = X(Oy)+xX(F), pg(X") = pg(Y)+h*(F)

Proof. The last two formulas are clear. The first one instead is proved in | , Corollary
8.3] or | , Proposition 10.3]. O

Proof. (of Theorem 5.4.24) The claim about connectedness follows from 5.4.23. The
formula for |Yp| is given in 5.4.33, while the formula for p, is clear since f,Ox ~ Oy @
(M ® det F) @ F & F. This relation, Riemann-Roch formula and the computation

X(£) = x(M@det F) = ((pte1)’ —(nte) K) [24x(Oy) = (—p—pk+ci—c1 K) [24x(Oy)

yields the formula for x(Ox). Therefore we focus on the formula for K%. The map

f: X — Y factors as X —fQ—> X' —f3—> Y where fo, f3 are covers of degree 2, 3 respectively
and X' is a surface, thanks to 5.4.14. Moreover, by definition, fo is induced by the
invertible sheaf A on X’ while f3 is induced by (F,d) € Cs. Notice that X' is a complete
smooth surface. Set A = Ox/(—C), where C is a divisor over X’ and set A? = A®o,, A.
Recall that A ~ L@ F. By 5.4.36 and 5.4.35 we have

K% =2K% +2C? + 4CKx = 6 K% — 8c1 K + 4¢3 — 6¢y +2C% +4CKx:  (5.4.3)
By Riemann-Roch and the definition of the intersection product we also get

2(x(A) = x(Ox1)) = C* + CKxr, C* = x(A%) —2x(A) + x(Ox)
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In particular CK y = 4x(A) — x(A?) — 3x(Ox). Putting everything together and using
5.4.36 and 5.4.34 we obtain

2C% + 4C Ky = —2x(A?) + 12x(A) — 10x(Ox) = —2x(A?) + 12x(L) + 2x(F) — 10x(Oy)
= —5¢2 + 8¢y + 3c1 K + 8% /3 + 2uK — 6x(Oy) — 62 — 6K + 6¢2 — 6 K+
12x(Oy) + ¢} — 2¢c; — 1 K + 4x(Oy) — 10x(Oy)
=2¢2 + 6cg — 4e1 K — 10p% /3 — 4uK

Substituting in 5.4.3 we get the desired result. O
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